
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8843412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic engineering of Corynebacterium glutamicum for de novo production of 3-hydroxycadaverine. Current Research in Biotechnology, 2022, 4, 32-46.	3.7	11
2	Recent advances in the metabolic pathways and microbial production of coenzyme Q. World Journal of Microbiology and Biotechnology, 2022, 38, 58.	3.6	15
3	Metabolic Engineering for Valorization of Agri- and Aqua-Culture Sidestreams for Production of Nitrogenous Compounds by Corynebacterium glutamicum. Frontiers in Microbiology, 2022, 13, 835131.	3.5	11
4	Functional Genomics Uncovers Pleiotropic Role of Rhomboids in Corynebacterium glutamicum. Frontiers in Microbiology, 2022, 13, 771968.	3.5	1
5	Production of indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications. Microbial Cell Factories, 2022, 21, 45.	4.0	19
6	Metabolic Engineering of Corynebacterium glutamicum for Sustainable Production of the Aromatic Dicarboxylic Acid Dipicolinic Acid. Microorganisms, 2022, 10, 730.	3.6	14
7	Fermentative Production of Halogenated Tryptophan Derivatives with <i>Corynebacterium glutamicum</i> Overexpressing Tryptophanase or Decarboxylase Genes. ChemBioChem, 2022, 23, .	2.6	6
8	Efficient cell factories for the production of <i>N</i> â€methylated amino acids and for methanolâ€based amino acid production. Microbial Biotechnology, 2022, 15, 2145-2159.	4.2	9
9	Rational Engineering of Non-Ubiquinone Containing Corynebacterium glutamicum for Enhanced Coenzyme Q10 Production. Metabolites, 2022, 12, 428.	2.9	4
10	Fermentative Indole Production via Bacterial Tryptophan Synthase Alpha Subunit and Plant Indole-3-Glycerol Phosphate Lyase Enzymes. Journal of Agricultural and Food Chemistry, 2022, 70, 5634-5645.	5.2	14
11	l-Serine Biosensor-Controlled Fermentative Production of l-Tryptophan Derivatives by Corynebacterium glutamicum. Biology, 2022, 11, 744.	2.8	9
12	Engineered Corynebacterium glutamicum as the Platform for the Production of Aromatic Aldehydes. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	14
13	Dynamic Co-Cultivation Process of Corynebacterium glutamicum Strains for the Fermentative Production of Riboflavin. Fermentation, 2021, 7, 11.	3.0	14
14	A bottom-up approach towards a bacterial consortium for the biotechnological conversion of chitin to l-lysine. Applied Microbiology and Biotechnology, 2021, 105, 1547-1561.	3.6	12
15	CRISPRi-Library-Guided Target Identification for Engineering Carotenoid Production by Corynebacterium glutamicum. Microorganisms, 2021, 9, 670.	3.6	16
16	Production of Biopolyamide Precursors 5-Amino Valeric Acid and Putrescine From Rice Straw Hydrolysate by Engineered Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2021, 9, 635509.	4.1	15
17	Coenzyme Q10 Biosynthesis Established in the Non-Ubiquinone Containing Corynebacterium glutamicum by Metabolic Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 650961.	4.1	12
18	Incorporation of alternative amino acids into cyanophycin by different cyanophycin synthetases heterologously expressed in Corynebacterium glutamicum. AMB Express, 2021, 11, 55.	3.0	8

#	Article	IF	CITATIONS
19	Genomic and Transcriptomic Investigation of the Physiological Response of the Methylotroph Bacillus methanolicus to 5-Aminovalerate. Frontiers in Microbiology, 2021, 12, 664598.	3.5	3
20	Sustainable Production of N-methylphenylalanine by Reductive Methylamination of Phenylpyruvate Using Engineered Corynebacterium glutamicum. Microorganisms, 2021, 9, 824.	3.6	12
21	L-Carnitine Production Through Biosensor-Guided Construction of the Neurospora crassa Biosynthesis Pathway in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2021, 9, 671321.	4.1	3
22	Interrogating the Role of the Two Distinct Fructose-Bisphosphate Aldolases of Bacillus methanolicus by Site-Directed Mutagenesis of Key Amino Acids and Gene Repression by CRISPR Interference. Frontiers in Microbiology, 2021, 12, 669220.	3.5	8
23	Evolving a New Efficient Mode of Fructose Utilization for Improved Bioproduction in Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2021, 9, 669093.	4.1	7
24	Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum. Microbial Cell Factories, 2021, 20, 97.	4.0	19
25	Advances in metabolic engineering of <i>Corynebacterium glutamicum</i> to produce high-value active ingredients for food, feed, human health, and well-being. Essays in Biochemistry, 2021, 65, 197-212.	4.7	71
26	Metabolic Engineering of <i>Pseudomonas putida</i> for Fermentative Production of <scp>l</scp> -Theanine. Journal of Agricultural and Food Chemistry, 2021, 69, 9849-9858.	5.2	9
27	Utilization of a Wheat Sidestream for 5-Aminovalerate Production in Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2021, 9, 732271.	4.1	12
28	Growth Response and Recovery of Corynebacterium glutamicum Colonies on Single-Cell Level Upon Defined pH Stress Pulses. Frontiers in Microbiology, 2021, 12, 711893.	3.5	12
29	Improved Plasmid-Based Inducible and Constitutive Gene Expression in Corynebacterium glutamicum. Microorganisms, 2021, 9, 204.	3.6	15
30	Tyrosinase-based production of l-DOPA by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2021, 105, 9103-9111.	3.6	8
31	Aerobic Utilization of Methanol for Microbial Growth and Production. Advances in Biochemical Engineering/Biotechnology, 2021, , .	1.1	3
32	Metabolic engineering advances and prospects for amino acid production. Metabolic Engineering, 2020, 58, 17-34.	7.0	177
33	Synthetic microbial consortia for small molecule production. Current Opinion in Biotechnology, 2020, 62, 72-79.	6.6	56
34	Methanol-based acetoin production by genetically engineered <i>Bacillus methanolicus</i> . Green Chemistry, 2020, 22, 788-802.	9.0	28
35	Corynebacterium glutamicum CrtR and Its Orthologs in Actinobacteria: Conserved Function and Application as Genetically Encoded Biosensor for Detection of Geranylgeranyl Pyrophosphate. International Journal of Molecular Sciences, 2020, 21, 5482.	4.1	13
36	Development of a Biosensor for Crotonobetaine-CoA Ligase Screening Based on the Elucidation of <i>>Escherichia coli</i> > Carnitine Metabolism. ACS Synthetic Biology, 2020, 9, 2460-2471.	3.8	7

#	Article	IF	CITATIONS
37	Screening of a genomeâ€reduced <i>Corynebacterium glutamicum</i> strain library for improved heterologous cutinase secretion. Microbial Biotechnology, 2020, 13, 2020-2031.	4.2	17
38	Heterologous expression of genes for bioconversion of xylose to xylonic acid in Corynebacterium glutamicum and optimization of the bioprocess. AMB Express, 2020, 10, 68.	3.0	16
39	Physiological Response of Corynebacterium glutamicum to Indole. Microorganisms, 2020, 8, 1945.	3.6	17
40	Inorganic Phosphate Solubilization by Rhizosphere Bacterium Paenibacillus sonchi: Gene Expression and Physiological Functions. Frontiers in Microbiology, 2020, 11, 588605.	3.5	29
41	Fermentative N-Methylanthranilate Production by Engineered Corynebacterium glutamicum. Microorganisms, 2020, 8, 866.	3.6	26
42	Development of a Corynebacterium glutamicum bio-factory for self-sufficient transaminase reactions. Green Chemistry, 2020, 22, 4128-4132.	9.0	10
43	Transaldolase in Bacillus methanolicus: biochemical characterization and biological role in ribulose monophosphate cycle. BMC Microbiology, 2020, 20, 63.	3.3	6
44	Microbial Engineering for Production of <i>Nâ€</i> Functionalized Amino Acids and Amines. Biotechnology Journal, 2020, 15, e1900451.	3.5	32
45	Impact of CRISPR interference on strain development in biotechnology. Biotechnology and Applied Biochemistry, 2020, 67, 7-21.	3.1	31
46	CRISPR interference-based gene repression in the plant growth promoter Paenibacillus sonchi genomovar Riograndensis SBR5. Applied Microbiology and Biotechnology, 2020, 104, 5095-5106.	3.6	9
47	Fermentative Production of l-2-Hydroxyglutarate by Engineered Corynebacterium glutamicum via Pathway Extension of l-Lysine Biosynthesis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 630476.	4.1	14
48	Genome-Reduced Corynebacterium glutamicum Fit for Biotechnological Applications. , 2020, , 95-116.		2
49	Charting the Metabolic Landscape of the Facultative Methylotroph Bacillus methanolicus. MSystems, 2020, 5, .	3.8	13
50	Flux Enforcement for Fermentative Production of 5-Aminovalerate and Glutarate by Corynebacterium glutamicum. Catalysts, 2020, 10, 1065.	3.5	18
51	Methanol-Essential Growth of Corynebacterium glutamicum: Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway. International Journal of Molecular Sciences, 2020, 21, 3617.	4.1	38
52	Metabolic Engineering in Corynebacterium glutamicum. Microbiology Monographs, 2020, , 287-322.	0.6	4
53	Characterization of D-Arabitol as Newly Discovered Carbon Source of Bacillus methanolicus. Frontiers in Microbiology, 2019, 10, 1725.	3.5	15
54	Bromination of L-tryptophan in a Fermentative Process With Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2019, 7, 219.	4.1	25

#	Article	IF	CITATIONS
55	Fermentative Production of N-Alkylated Glycine Derivatives by Recombinant Corynebacterium glutamicum Using a Mutant of Imine Reductase DpkA From Pseudomonas putida. Frontiers in Bioengineering and Biotechnology, 2019, 7, 232.	4.1	22
56	Establishment and application of CRISPR interference to affect sporulation, hydrogen peroxide detoxification, and mannitol catabolism in the methylotrophic thermophile Bacillus methanolicus. Applied Microbiology and Biotechnology, 2019, 103, 5879-5889.	3.6	28
57	Function of L-Pipecolic Acid as Compatible Solute in Corynebacterium glutamicum as Basis for Its Production Under Hyperosmolar Conditions. Frontiers in Microbiology, 2019, 10, 340.	3.5	27
58	Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum. Bioresource Technology, 2019, 281, 135-142.	9.6	39
59	Improved Astaxanthin Production with Corynebacterium glutamicum by Application of a Membrane Fusion Protein. Marine Drugs, 2019, 17, 621.	4.6	33
60	Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan. Journal of Biotechnology, 2019, 291, 7-16.	3.8	37
61	Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives. Applied Microbiology and Biotechnology, 2018, 102, 3583-3594.	3.6	53
62	Synthetic Escherichia coli-Corynebacterium glutamicum consortia for l-lysine production from starch and sucrose. Bioresource Technology, 2018, 260, 302-310.	9.6	69
63	Coproduction of cell-bound and secreted value-added compounds: Simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum. Bioresource Technology, 2018, 247, 744-752.	9.6	48
64	Invasion ecology applied to inoculation of plant growth promoting bacteria through a novel SIMPER-PCA approach. Plant and Soil, 2018, 422, 467-478.	3.7	7
65	<i>Corynebacterium glutamicum</i> Chassis C1*: Building and Testing a Novel Platform Host for Synthetic Biology and Industrial Biotechnology. ACS Synthetic Biology, 2018, 7, 132-144.	3.8	63
66	Production of Food and Feed Additives From Non-food-competing Feedstocks: Valorizing N-acetylmuramic Acid for Amino Acid and Carotenoid Fermentation With Corynebacterium glutamicum. Frontiers in Microbiology, 2018, 9, 2046.	3.5	22
67	Efficient Production of the Dicarboxylic Acid Glutarate by Corynebacterium glutamicum via a Novel Synthetic Pathway. Frontiers in Microbiology, 2018, 9, 2589.	3.5	39
68	Fermentative Production of N-Methylglutamate From Glycerol by Recombinant Pseudomonas putida. Frontiers in Bioengineering and Biotechnology, 2018, 6, 159.	4.1	29
69	One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Scientific Reports, 2018, 8, 12895.	3.3	32
70	Chemicals from lignin: Recent depolymerization techniques and upgrading extended pathways. Current Opinion in Green and Sustainable Chemistry, 2018, 14, 33-39.	5.9	55
71	Synthetic Methylotrophy: Past, Present, and Future. , 2018, , 133-151.		10
72	Transport and metabolic engineering of the cell factory Corynebacterium glutamicum. FEMS Microbiology Letters, 2018, 365, .	1.8	50

VOLKER F WENDISCH

#	Article	IF	CITATIONS
73	Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum. Genes, 2018, 9, 219.	2.4	57
74	Carotenoid Production by Recombinant Corynebacterium glutamicum: Strain Construction, Cultivation, Extraction, and Quantification of Carotenoids and Terpenes. Methods in Molecular Biology, 2018, 1852, 127-141.	0.9	7
75	Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum : Application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metabolic Engineering Communications, 2017, 4, 1-11.	3.6	36
76	Fermentative production of Lâ€pipecolic acid from glucose and alternative carbon sources. Biotechnology Journal, 2017, 12, 1600646.	3.5	58
77	l -lysine production by Bacillus methanolicus : Genome-based mutational analysis and l -lysine secretion engineering. Journal of Biotechnology, 2017, 244, 25-33.	3.8	21
78	Production of amino acids – Genetic and metabolic engineering approaches. Bioresource Technology, 2017, 245, 1575-1587.	9.6	93
79	Methanol as carbon substrate in the bioâ€economy: Metabolic engineering of aerobic methylotrophic bacteria for production of valueâ€added chemicals. Biofuels, Bioproducts and Biorefining, 2017, 11, 719-731.	3.7	67
80	Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. Journal of Biotechnology, 2017, 258, 59-68.	3.8	52
81	A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources. Bioresource Technology, 2017, 245, 1701-1709.	9.6	64
82	Magnesium aminoclay-based transformation of Paenibacillus riograndensis and Paenibacillus polymyxa and development of tools for gene expression. Applied Microbiology and Biotechnology, 2017, 101, 735-747.	3.6	18
83	Methanol-based Î ³ -aminobutyric acid (GABA) production by genetically engineered Bacillus methanolicus strains. Industrial Crops and Products, 2017, 106, 12-20.	5.2	43
84	Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. Journal of Biotechnology, 2017, 257, 211-221.	3.8	98
85	Improved fermentative production of gammaâ€aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose. Biotechnology and Bioengineering, 2017, 114, 862-873.	3.3	67
86	Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum. Frontiers in Microbiology, 2017, 8, 633.	3.5	44
87	Reclassification of Paenibacillus riograndensis as a Genomovar of Paenibacillus sonchi: Genome-Based Metrics Improve Bacterial Taxonomic Classification. Frontiers in Microbiology, 2017, 8, 1849.	3.5	27
88	Detailed transcriptome analysis of the plant growth promoting Paenibacillus riograndensis SBR5 by using RNA-seq technology. BMC Genomics, 2017, 18, 846.	2.8	17
89	Physiological roles of sigma factor SigD in Corynebacterium glutamicum. BMC Microbiology, 2017, 17, 158.	3.3	26
90	In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones. Microbial Cell Factories, 2017, 16, 132.	4.0	11

#	Article	IF	CITATIONS
91	Effects of Kasugamycin on the Translatome of Escherichia coli. PLoS ONE, 2017, 12, e0168143.	2.5	15
92	Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production. Frontiers in Microbiology, 2016, 7, 1481.	3.5	43
93	Production of the Marine Carotenoid Astaxanthin by Metabolically Engineered Corynebacterium glutamicum. Marine Drugs, 2016, 14, 124.	4.6	90
94	Corynebacterium glutamicum possesses β-N-acetylglucosaminidase. BMC Microbiology, 2016, 16, 177.	3.3	16
95	Chassis organism from Corynebacterium glutamicum – Genome reduction as a tool toward improved strains for synthetic biology and industrial biotechnology. New Biotechnology, 2016, 33, S25.	4.4	1
96	Updates on industrial production of amino acids using Corynebacterium glutamicum. World Journal of Microbiology and Biotechnology, 2016, 32, 105.	3.6	126
97	Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum. BMC Microbiology, 2016, 16, 235.	3.3	23
98	The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. Journal of Biotechnology, 2016, 234, 139-157.	3.8	109
99	Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β- <scp>d</scp> -Thiogalactopyranoside for Light-Mediated Optimization of <i>lac</i> Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum. Applied and Environmental Microbiology. 2016. 82. 6141-6149.	3.1	40
100	Microbial Production of Amino Acid-Related Compounds. Advances in Biochemical Engineering/Biotechnology, 2016, 159, 255-269.	1.1	13
101	Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR. Journal of Bacteriology, 2016, 198, 2204-2218.	2.2	12
102	A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Amino Acids, 2016, 48, 2519-2531.	2.7	65
103	Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. Journal of Biotechnology, 2016, 230, 63-71.	3.8	45
104	Engineering Corynebacterium glutamicum for fast production of l-lysine and l-pipecolic acid. Applied Microbiology and Biotechnology, 2016, 100, 8075-8090.	3.6	84
105	Roles of export genes cgmA and lysE for the production of l-arginine and l-citrulline by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2016, 100, 8465-8474.	3.6	56
106	Co-expression of endoglucanase and β-glucosidase in Corynebacterium glutamicum DM1729 towards direct lysine fermentation from cellulose. Bioresource Technology, 2016, 213, 239-244.	9.6	30
107	<i>Corynebacterium glutamicum</i> Metabolic Engineering with CRISPR Interference (CRISPRi). ACS Synthetic Biology, 2016, 5, 375-385.	3.8	222
108	Soil suppressiveness and its relations with the microbial community in a Brazilian subtropical agroecosystem under different management systems. Soil Biology and Biochemistry, 2016, 96, 191-197.	8.8	42

#	Article	IF	CITATIONS
109	Biotechnological Production of Amino Acids and Nucleotides. , 2016, , 60-163.		2
110	Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum. BMC Microbiology, 2015, 15, 216.	3.3	43
111	Engineering microbial cell factories: Metabolic engineering of <i>Corynebacterium glutamicum</i> with a focus on nonâ€natural products. Biotechnology Journal, 2015, 10, 1170-1184.	3.5	102
112	Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Frontiers in Microbiology, 2015, 6, 740.	3.5	30
113	Fermentative Production of the Diamine Putrescine: System Metabolic Engineering of Corynebacterium Glutamicum. Metabolites, 2015, 5, 211-231.	2.9	70
114	Complete genome sequence of Paenibacillus riograndensis SBR5T, a Gram-positive diazotrophic rhizobacterium. Journal of Biotechnology, 2015, 207, 30-31.	3.8	13
115	Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol. Applied Microbiology and Biotechnology, 2015, 99, 535-551.	3.6	63
116	Engineering Escherichia coli for methanol conversion. Metabolic Engineering, 2015, 28, 190-201.	7.0	166
117	Metabolic Engineering of an ATP-Neutral Embden-Meyerhof-Parnas Pathway in Corynebacterium glutamicum: Growth Restoration by an Adaptive Point Mutation in NADH Dehydrogenase. Applied and Environmental Microbiology, 2015, 81, 1996-2005.	3.1	28
118	Transcriptome analysis of thermophilic methylotrophic Bacillus methanolicus MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics, 2015, 16, 73.	2.8	49
119	Chassis organism from <i>Corynebacterium glutamicum</i> – a topâ€down approach to identify and delete irrelevant gene clusters. Biotechnology Journal, 2015, 10, 290-301.	3.5	102
120	Molecular Biotechnology: From enzymes and metabolically engineered microbes to superior and sustainable products and processes. Journal of Biotechnology, 2015, 201, 1.	3.8	3
121	Role of L-alanine for redox self-sufficient amination of alcohols. Microbial Cell Factories, 2015, 14, 9.	4.0	21
122	Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. Journal of Biotechnology, 2015, 214, 85-94.	3.8	60
123	Methanolâ€based cadaverine production by genetically engineered <scp><i>B</i></scp> <i>acillus methanolicus</i> strains. Microbial Biotechnology, 2015, 8, 342-350.	4.2	76
124	Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB. BMC Microbiology, 2015, 15, 113.	3.3	10
125	Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnology for Biofuels, 2015, 8, 91.	6.2	71
126	Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Applied Microbiology and Biotechnology, 2015, 99, 10163-10176.	3.6	96

#	Article	IF	CITATIONS
127	Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. Journal of Biotechnology, 2015, 201, 75-85.	3.8	59
128	Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum. Microbiology (United Kingdom), 2015, 161, 1830-1843.	1.8	6
129	Metabolic Engineering of Corynebacterium glutamicum for Alternative Carbon Source Utilization. , 2015, , 57-70.		2
130	Thick Juice-Based Production of Amino Acihttp://www.omicsonline.org/open-access/thick-juice-based-production-of-amino-acids-2155-952X-4-167.php and Putrescine by Corynebacterium glutamicum. Journal of Biotechnology & Biomaterials, 2014, 04, .	?aid e33 444	6ds2
131	ldsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in <i><scp>C</scp>orynebacterium glutamicum</i> . FEBS Journal, 2014, 281, 4906-4920.	4.7	31
132	Whole cell biotransformation for reductive amination reactions. Bioengineered, 2014, 5, 56-62.	3.2	14
133	L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express, 2014, 4, 85.	3.0	39
134	Amino Acid Production from Rice Straw Hydrolyzates. , 2014, , 493-505.		7
135	Advances in Industrial Biotechnology: Synthetic Pathways and Reaction Cascades. Journal of Biotechnology, 2014, 192, 291-292.	3.8	1
136	Engineering of Corynebacterium glutamicum for growth and production of L-ornithine, L-lysine, and lycopene from hexuronic acids. Bioresources and Bioprocessing, 2014, 1, .	4.2	21
137	Characterization of 3-phosphoglycerate kinase from Corynebacterium glutamicum and its impact on amino acid production. BMC Microbiology, 2014, 14, 54.	3.3	17
138	Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production. Journal of Biotechnology, 2014, 192, 346-354.	3.8	30
139	Production and glucosylation of C50 and C40 carotenoids by metabolically engineered Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2014, 98, 1223-1235.	3.6	89
140	Engineering of Corynebacterium glutamicum for growth and l-lysine and lycopene production from N-acetyl-glucosamine. Applied Microbiology and Biotechnology, 2014, 98, 5633-5643.	3.6	60
141	Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Applied Microbiology and Biotechnology, 2014, 98, 4355-4368.	3.6	80
142	Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. BMC Microbiology, 2014, 14, 7.	3.3	18
143	Metabolic engineering of Corynebacterium glutamicum for glycolate production. Journal of Biotechnology, 2014, 192, 366-375.	3.8	73
144	The Genomics Revolution and its Impact on Future Biotechnology. Journal of Biotechnology, 2014, 190, 1.	3.8	1

VOLKER F WENDISCH

#	Article	IF	CITATIONS
145	Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of d-xylose containing substrates. Journal of Biotechnology, 2014, 192, 156-160.	3.8	78
146	Complete genome sequence of Bacillus methanolicus MGA3, a thermotolerant amino acid producing methylotroph. Journal of Biotechnology, 2014, 188, 110-111.	3.8	31
147	Identification of engineering targets for improving putrescine production by Corynebacterium glutamicum. New Biotechnology, 2014, 31, S166.	4.4	1
148	Metabolic Engineering an ATP-neutral EMP pathway in C. glutamicum: adaptive point mutation in NADH dehydrogenase restores growth. New Biotechnology, 2014, 31, S165.	4.4	0
149	Microbial production of amino acids and derived chemicals: Synthetic biology approaches to strain development. Current Opinion in Biotechnology, 2014, 30, 51-58.	6.6	129
150	Redox self-sufficient whole cell biotransformation for amination of alcohols. Bioorganic and Medicinal Chemistry, 2014, 22, 5578-5585.	3.0	51
151	Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum. Journal of Biotechnology, 2014, 191, 205-213.	3.8	82
152	Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2014, 2, 28.	4.1	67
153	Development of a Novel Assay for Synthesis and Hydrolysis of Sedoheptulose 1,7-bisphosphate (SBP) in vitro by Combinations of Purified Fructose 1,6-bisphosphate aldolases (FBA) Proteins and Fructose 1,6-bisphosphatases (FBPase) Proteins from Bacillus methanolicus MGA3. Bio-protocol, 2014, 4, .	0.4	0
154	Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microbial Cell Factories, 2013, 12, 63.	4.0	74
155	Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2013, 97, 1679-1687.	3.6	91
156	Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants. Applied Microbiology and Biotechnology, 2013, 97, 143-152.	3.6	40
157	Reductive amination by recombinant Escherichia coli: Whole cell biotransformation of 2-keto-3-methylvalerate to l-isoleucine. Journal of Biotechnology, 2013, 168, 289-294.	3.8	10
158	Phosphotransferase System-Mediated Glucose Uptake Is Repressed in Phosphoglucoisomerase-Deficient Corynebacterium glutamicum Strains. Applied and Environmental Microbiology, 2013, 79, 2588-2595.	3.1	39
159	Bio-integrated organic synthesis in industry: Biocatalytic breakthroughs, industrial processes, emerging fields. Journal of Biotechnology, 2013, 168, 241-242.	3.8	0
160	Research on industrial biotechnology within the CLIB-Graduate Cluster—Part III. Journal of Biotechnology, 2013, 167, 73-74.	3.8	0
161	Accelerated pentose utilization by <i><scp>C</scp>orynebacterium glutamicum</i> for accelerated production of lysine, glutamate, ornithine and putrescine. Microbial Biotechnology, 2013, 6, 131-140.	4.2	143
162	Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresource Technology, 2013, 145, 254-258.	9.6	117

#	Article	IF	CITATIONS
163	Changes in Root Bacterial Communities Associated to Two Different Development Stages of Canola (Brassica napus L. var oleifera) Evaluated through Next-Generation Sequencing Technology. Microbial Ecology, 2013, 65, 593-601.	2.8	62
164	Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands. Journal of Biotechnology, 2013, 163, 194-203.	3.8	25
165	Characterization of Fructose 1,6-Bisphosphatase and Sedoheptulose 1,7-Bisphosphatase from the Facultative Ribulose Monophosphate Cycle Methylotroph Bacillus methanolicus. Journal of Bacteriology, 2013, 195, 5112-5122.	2.2	39
166	Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase. Microbiology (United Kingdom), 2013, 159, 2651-2662.	1.8	27
167	Transcriptome/Proteome Analysis of Corynebacterium glutamicum. Microbiology Monographs, 2013, , 173-216.	0.6	2
168	The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology (United Kingdom), 2013, 159, 1770-1781.	1.8	28
169	Glycerol-3-phosphatase of Corynebacterium glutamicum. Journal of Biotechnology, 2012, 159, 216-224.	3.8	19
170	Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for l-methionine and branched-chain amino acids. Journal of Biotechnology, 2012, 158, 231-241.	3.8	78
171	Regulation of the malic enzyme gene malE by the transcriptional regulator MalR in Corynebacterium glutamicum. Journal of Biotechnology, 2012, 159, 204-215.	3.8	24
172	METABOLIC ENGINEERING OF CORYNEBACTERIUM GLUTAMICUM AIMED AT ALTERNATIVE CARBON SOURCES AND NEW PRODUCTS. Computational and Structural Biotechnology Journal, 2012, 3, e201210004.	4.1	71
173	Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Applied Soil Ecology, 2012, 55, 44-52.	4.3	121
174	Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum. BMC Microbiology, 2012, 12, 6.	3.3	17
175	Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiology, 2012, 12, 198.	3.3	108
176	Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Applied Microbiology and Biotechnology, 2012, 95, 169-178.	3.6	117
177	Biotin protein ligase from Corynebacterium glutamicum: role for growth and l-lysine production. Applied Microbiology and Biotechnology, 2012, 93, 2493-2502.	3.6	20
178	Phosphotransferase System-Independent Glucose Utilization in Corynebacterium glutamicum by Inositol Permeases and Glucokinases. Applied and Environmental Microbiology, 2011, 77, 3571-3581.	3.1	103
179	Impact of a new glucose utilization pathway in amino acid-producingCorynebacterium glutamicum. Bioengineered Bugs, 2011, 2, 291-295.	1.7	25
180	Biotechnological production of polyamines by Bacteria: recent achievements and future perspectives. Applied Microbiology and Biotechnology, 2011, 91, 17-30.	3.6	125

#	Article	IF	CITATIONS
181	Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2011, 92, 985-996.	3.6	108
182	RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. Journal of Biotechnology, 2011, 154, 126-139.	3.8	78
183	Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. Journal of Biotechnology, 2011, 154, 191-198.	3.8	174
184	The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum. Journal of Biotechnology, 2011, 154, 149-155.	3.8	27
185	Corynebacterium glutamicum Tailored for Efficient Isobutanol Production. Applied and Environmental Microbiology, 2011, 77, 3300-3310.	3.1	290
186	Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Applied Microbiology and Biotechnology, 2010, 87, 583-593.	3.6	43
187	Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2010, 87, 703-713.	3.6	55
188	Putrescine production by engineered Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2010, 88, 859-868.	3.6	192
189	Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate. BMC Microbiology, 2010, 10, 321.	3.3	30
190	Characterization of biotin metabolism in Corynebacterium glutamicum. Journal of Biotechnology, 2010, 150, 351-351.	3.8	0
191	Exopolyphosphatases PPX1 and PPX2 from <i>Corynebacterium glutamicum</i> . Applied and Environmental Microbiology, 2009, 75, 3161-3170.	3.1	32
192	Characterization of the Dicarboxylate Transporter DctA in <i>Corynebacterium glutamicum</i> . Journal of Bacteriology, 2009, 191, 5480-5488.	2.2	81
193	Pathway identification combining metabolic flux and functional genomics analyses: Acetate and propionate activation by Corynebacterium glutamicum. Journal of Biotechnology, 2009, 140, 75-83.	3.8	41
194	Ethanol Catabolism in <i>Corynebacterium glutamicum</i> . Journal of Molecular Microbiology and Biotechnology, 2008, 15, 222-233.	1.0	74
195	ScrB (Cg2927) is a sucrose-6-phosphate hydrolase essential for sucrose utilization by <i>Corynebacterium glutamicum</i> . FEMS Microbiology Letters, 2008, 289, 80-89.	1.8	32
196	Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. Journal of Applied Microbiology, 2008, 105, 951-962.	3.1	28
197	Engineering of a Glycerol Utilization Pathway for Amino Acid Production by <i>Corynebacterium glutamicum</i> . Applied and Environmental Microbiology, 2008, 74, 6216-6222.	3.1	137
198	The Global Repressor SugR Controls Expression of Genes of Glycolysis and of the <scp>l</scp> -Lactate Dehydrogenase LdhA in <i>Corynebacterium glutamicum</i> . Journal of Bacteriology, 2008, 190, 8033-8044.	2.2	80

VOLKER F WENDISCH

#	Article	IF	CITATIONS
199	Identification and Characterization of the Dicarboxylate Uptake System DccT in <i>Corynebacterium glutamicum</i> . Journal of Bacteriology, 2008, 190, 6458-6466.	2.2	78
200	Regulation of <scp>l</scp> -Lactate Utilization by the FadR-Type Regulator LldR of <i>Corynebacterium glutamicum</i> . Journal of Bacteriology, 2008, 190, 963-971.	2.2	68
201	Gene Expression Analysis of Corynebacterium glutamicum Subjected to Long-Term Lactic Acid Adaptation. Journal of Bacteriology, 2007, 189, 5582-5590.	2.2	48
202	The plasticity of global proteome and genome expression analyzed in closely related W3110 and MG1655 strains of a well-studied model organism, Escherichia coli-K12. Journal of Biotechnology, 2007, 128, 747-761.	3.8	29
203	The DeoR-Type Regulator SugR Represses Expression of ptsG in Corynebacterium glutamicum. Journal of Bacteriology, 2007, 189, 2955-2966.	2.2	131
204	NCgl2620 Encodes a Class II Polyphosphate Kinase in Corynebacterium glutamicum. Applied and Environmental Microbiology, 2007, 73, 5026-5033.	3.1	77
205	Characterization of citrate utilization inCorynebacterium glutamicumby transcriptome and proteome analysis. FEMS Microbiology Letters, 2007, 273, 109-119.	1.8	61
206	Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Applied Microbiology and Biotechnology, 2007, 74, 406-421.	3.6	85
207	Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves I-lysine formation. Applied Microbiology and Biotechnology, 2007, 75, 47-53.	3.6	126
208	Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Applied Microbiology and Biotechnology, 2007, 76, 677-689.	3.6	58
209	Characterization of myo -Inositol Utilization by Corynebacterium glutamicum : the Stimulon, Identification of Transporters, and Influence on I -Lysine Formation. Journal of Bacteriology, 2006, 188, 8054-8061.	2.2	94
210	Emerging Corynebacterium glutamicum systems biology. Journal of Biotechnology, 2006, 124, 74-92.	3.8	103
211	Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Current Opinion in Microbiology, 2006, 9, 268-274.	5.1	253
212	Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2006, 72, 1099-1106.	3.6	31
213	Two-Component Systems of Corynebacterium glutamicum : Deletion Analysis and Involvement of the Phos-PhoR System in the Phosphate Starvation Response. Journal of Bacteriology, 2006, 188, 724-732.	2.2	70
214	Formation of volutin granules inCorynebacterium glutamicum. FEMS Microbiology Letters, 2005, 243, 133-140.	1.8	56
215	Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: Roles of malic enzyme and fructose-1,6-bisphosphatase. Metabolic Engineering, 2005, 7, 291-301.	7.0	161
216	Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli. Microbiology (United Kingdom), 2005, 151, 3287-3298.	1.8	100

#	Article	IF	CITATIONS
217	Identification of AcnR, a TetR-type Repressor of the Aconitase Gene acn in Corynebacterium glutamicum. Journal of Biological Chemistry, 2005, 280, 585-595.	3.4	62
218	Genome-Wide Analysis of the General Stress Response Network in <i>Escherichia coli</i> : Ïf ^S -Dependent Genes, Promoters, and Sigma Factor Selectivity. Journal of Bacteriology, 2005, 187, 1591-1603.	2.2	743
219	Phosphate Starvation-Inducible Gene ushA Encodes a 5′ Nucleotidase Required for Growth of Corynebacterium glutamicum on Media with Nucleotides as the Phosphorus Source. Applied and Environmental Microbiology, 2005, 71, 4339-4344.	3.1	45
220	The global gene expression response of Escherichia coli to l-phenylalanine. Journal of Biotechnology, 2005, 115, 221-237.	3.8	48
221	Characterization of a Corynebacterium glutamicum Lactate Utilization Operon Induced during Temperature-Triggered Glutamate Production. Applied and Environmental Microbiology, 2005, 71, 5920-5928.	3.1	173
222	Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits l-glutamate efflux of Corynebacterium glutamicum. Microbiology (United Kingdom), 2005, 151, 1359-1368.	1.8	116
223	Phosphorus Metabolism. , 2005, , 377-396.		12
224	Genomewide Expression Analysis in Amino Acid-Producing Bacteria Using DNA Microarrays. Applied Biochemistry and Biotechnology, 2004, 118, 215-232.	2.9	55
225	Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Archives of Microbiology, 2004, 182, 354-363.	2.2	68
226	Fructose-1,6-bisphosphatase from Corynebacterium glutamicum : expression and deletion of the fbp gene and biochemical characterization of the enzyme. Archives of Microbiology, 2003, 180, 285-292.	2.2	75
227	Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. Journal of Biotechnology, 2003, 104, 273-285.	3.8	117
228	The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. Journal of Biotechnology, 2003, 104, 5-25.	3.8	844
229	Acetate metabolism and its regulation in Corynebacterium glutamicum. Journal of Biotechnology, 2003, 104, 99-122.	3.8	186
230	Global Expression Profiling and Physiological Characterization of <i>Corynebacterium glutamicum</i> Grown in the Presence of <scp>l</scp> -Valine. Applied and Environmental Microbiology, 2003, 69, 2521-2532.	3.1	83
231	The Phosphate Starvation Stimulon of <i>Corynebacterium glutamicum</i> Determined by DNA Microarray Analyses. Journal of Bacteriology, 2003, 185, 4519-4529.	2.2	137
232	DNA Microarray Analyses of the Long-Term Adaptive Response of <i>Escherichia coli</i> to Acetate and Propionate. Applied and Environmental Microbiology, 2003, 69, 1759-1774.	3.1	102
233	Escherichia coli Spotted Double-Strand DNA Microarrays: RNA Extraction, Labeling, Hybridization, Quality Control, and Data Management. , 2003, 224, 61-78.		57
234	LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Molecular Microbiology, 2002, 45, 521-532.	2.5	210

#	Article	IF	CITATIONS
235	Isolation of Escherichia coli mRNA and Comparison of Expression Using mRNA and Total RNA on DNA Microarrays. Analytical Biochemistry, 2001, 290, 205-213.	2.4	67
236	Quantitative Determination of Metabolic Fluxes during Coutilization of Two Carbon Sources: Comparative Analyses with <i>Corynebacterium glutamicum</i> during Growth on Acetate and/or Glucose. Journal of Bacteriology, 2000, 182, 3088-3096.	2.2	243
237	Nitrogen regulatory protein C-controlled genes of Escherichia coli: Scavenging as a defense against nitrogen limitation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14674-14679.	7.1	353
238	Adaptation of the filamentous fungus Ashbya gossypii to hyperosmotic stress: different osmoresponse to NaCl and mannitol stress. Applied Microbiology and Biotechnology, 1998, 50, 219-226.	3.6	11
239	Pyruvate carboxylase as an anaplerotic enzyme in Corynebacterium glutamicum. Microbiology (United) Tj ETQq1	1 0,78431 1.8	4_rgBT /Ove
240	Efflux of Compatible Solutes in Corynebacterium Glutamicum Mediated by Osmoregulated Channel Activity. FEBS Journal, 1997, 247, 572-580.	0.2	57
241	Carbohydrate metabolism in Thermoproteus tenax : in vivo utilization of the non-phosphorylative Entner-Doudoroff pathway and characterization of its first enzyme, glucose dehydrogenase. Archives of Microbiology, 1997, 168, 120-127.	2.2	52
242	Regulation of acetate metabolism in Corynebacterium glutamicum : transcriptional control of the isocitrate lyase and malate synthase genes. Archives of Microbiology, 1997, 168, 262-269.	2.2	74
243	Propionate oxidation in Escherichia coli : evidence for operation of a methylcitrate cycle in bacteria. Archives of Microbiology, 1997, 168, 428-436.	2.2	173
244	Accurate Determination of13C Enrichments in Nonprotonated Carbon Atoms of Isotopically Enriched Amino Acids by1H Nuclear Magnetic Resonance. Analytical Biochemistry, 1997, 245, 196-202.	2.4	21
245	C 3 -Carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum. Archives of Microbiology, 1996, 165, 387-396.	2.2	39
246	Carotenoid Production by Corynebacterium: The Workhorse of Industrial Amino Acid Production as Host for Production of a Broad Spectrum of C40 and C50 Carotenoids. , 0, , .		2
247	Editorial: Engineering Corynebacterium glutamicum Chassis for Synthetic Biology, Biomanufacturing, and Bioremediation. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	0