Albrecht G Von Arnim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8843081/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review: Emerging roles of the signaling network of the protein kinase GCN2 in the plant stress response. Plant Science, 2022, 320, 111280.	3.6	5
2	Early Detection of Daylengths with a Feedforward Circuit Coregulated by Circadian and Diurnal Cycles. Biophysical Journal, 2020, 119, 1878-1895.	0.5	7
3	Translational gene regulation in plants: A green new deal. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1597.	6.4	37
4	Light Activates the Translational Regulatory Kinase GCN2 via Reactive Oxygen Species Emanating from the Chloroplast. Plant Cell, 2020, 32, 1161-1178.	6.6	37
5	ErbB-3 BINDING PROTEIN 1 Regulates Translation and Counteracts RETINOBLASTOMA RELATED to Maintain the Root Meristem. Plant Physiology, 2020, 182, 919-932.	4.8	10
6	Light-Dependent Activation of the GCN2 Kinase Under Cold and Salt Stress Is Mediated by the Photosynthetic Status of the Chloroplast. Frontiers in Plant Science, 2020, 11, 431.	3.6	21
7	What makes ribosomes tick?. RNA Biology, 2018, 15, 44-54.	3.1	9
8	Graduate Training at the Interface of Computational and Experimental Biology: An Outcome Report from a Partnership of Volunteers between a University and a National Laboratory. CBE Life Sciences Education, 2017, 16, ar61.	2.3	4
9	Phosphorylation of Ribosomal Protein RPS6 Integrates Light Signals and Circadian Clock Signals. Frontiers in Plant Science, 2017, 8, 2210.	3.6	49
10	Meeting report: processing, translation, decay – three ways to keep RNA sizzling. Plant, Cell and Environment, 2016, 39, 2624-2628.	5.7	0
11	The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading. Plant Cell, 2015, 27, 2582-2599.	6.6	83
12	Translational Control of Arabidopsis Meristem Stability and Organogenesis by the Eukaryotic Translation Factor eIF3h. PLoS ONE, 2014, 9, e95396.	2.5	22
13	Regulation of plant translation by upstream open reading frames. Plant Science, 2014, 214, 1-12.	3.6	179
14	Analysis of mRNA Translation States in Arabidopsis Over the Diurnal Cycle by Polysome Microarray. Methods in Molecular Biology, 2014, 1158, 157-174.	0.9	21
15	Translational Regulation of Cytoplasmic mRNAs. The Arabidopsis Book, 2013, 11, e0165.	0.5	61
16	The global translation profile in a ribosomal protein mutant resembles that of an eIF3 mutant. BMC Biology, 2013, 11, 123.	3.8	22
17	UORF-mediated Translational Control in Eukaryotes. , 2013, , 2325-2328.		0
18	Optimizing environmental conditions and image processing as a means for simplifying BRET imaging. FASEB Journal, 2013, 27, 574.8.	0.5	0

Albrecht G Von Arnim

#	Article	IF	CITATIONS
19	Arabidopsis BPG2: a phytochrome-regulated gene whose protein product binds to plastid ribosomal RNAs. Planta, 2012, 236, 677-690.	3.2	22
20	Known and novel post-transcriptional regulatory sequences are conserved across plant families. Rna, 2012, 18, 368-384.	3.5	77
21	Fluorescence-Tagged Transgenic Lines Reveal Genetic Defects in Pollen Growth—Application to the Eif3 Complex. PLoS ONE, 2011, 6, e17640.	2.5	10
22	Translation reinitiation and development are compromised in similar ways by mutations in translation initiation factor eIF3h and the ribosomal protein RPL24. BMC Plant Biology, 2010, 10, 193.	3.6	60
23	The h subunit of elF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames. Rna, 2010, 16, 748-761.	3.5	83
24	YABBYs and the Transcriptional Corepressors LEUNIG and LEUNIG_HOMOLOG Maintain Leaf Polarity and Meristem Activity in <i>Arabidopsis</i> Â. Plant Cell, 2009, 21, 3105-3118.	6.6	195
25	<i>FIERY1</i> regulates lightâ€mediated repression of cell elongation and flowering time via its 3′(2′),5′â€bisphosphate nucleotidase activity. Plant Journal, 2009, 58, 208-219.	5.7	58
26	The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods, 2009, 5, 6.	4.3	223
27	Arabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation. Plant Journal, 2008, 53, 300-311.	5.7	47
28	Structure–function studies on the active site of the coelenterazineâ€dependent luciferase from <i>Renilla</i> . Protein Science, 2008, 17, 725-735.	7.6	50
29	Mutational optimization of the coelenterazine-dependent luciferase from Renilla. Plant Methods, 2008, 4, 23.	4.3	40
30	Chemically Induced and Light-Independent Cryptochrome Photoreceptor Activation. Molecular Plant, 2008, 1, 4-14.	8.3	42
31	Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10264-10269.	7.1	130
32	On the functions of the h subunit of eukaryotic initiation factor 3 in late stages of translation initiation. Genome Biology, 2007, 8, R60.	9.6	78
33	A suite of tools and application notes forin vivoprotein interaction assays using bioluminescence resonance energy transfer (BRET). Plant Journal, 2006, 48, 138-152.	5.7	71
34	The Early Dark-Response in Arabidopsis thaliana Revealed by cDNA Microarray Analysis. Plant Molecular Biology, 2006, 60, 321-342.	3.9	27
35	In Vivo Detection of Protein–Protein Interaction in Plant Cells Using BRET. , 2004, 284, 271-286.		27
36	Translational Regulation via 5′ mRNA Leader Sequences Revealed by Mutational Analysis of the Arabidopsis Translation Initiation Factor Subunit eIF3h. Plant Cell, 2004, 16, 3341-3356.	6.6	87

#	Article	IF	CITATIONS
37	The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: Mutational analysis by bioluminescence resonance energy transfer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6798-6802.	7.1	119
38	Molecular Approaches to the Study of Plant Development. , 2004, , 119-141.		0
39	Epigenetic interactions between Arabidopsis transgenes: characterization in light of transgene integration sites. Plant Molecular Biology, 2003, 52, 217-231.	3.9	34
40	Novel plant activation-tagging vectors designed to minimize 35S enhancer-mediated gene silencing. Plant Molecular Biology Reporter, 2003, 21, 349-358.	1.8	10
41	Protein Homeostasis: A Degrading Role for Int6/eIF3e. Current Biology, 2003, 13, R323-R325.	3.9	30
42	On again – off again: COP9 signalosome turns the key on protein degradation. Current Opinion in Plant Biology, 2003, 6, 520-529.	7.1	29
43	[12] Bioluminescence resonance energy transfer: Monitoring protein-protein interactions in living cells. Methods in Enzymology, 2003, 360, 289-301.	1.0	46
44	Repressors of photomorphogenesis. International Review of Cytology, 2002, 220, 185-223.	6.2	35
45	Epigenetic history of an Arabidopsis trans-silencer locus and a test for relay of trans-silencing activity. BMC Plant Biology, 2002, 2, 11.	3.6	10
46	PCI complexes: pretty complex interactions in diverse signaling pathways. Trends in Plant Science, 2001, 6, 379-386.	8.8	78
47	Arabidopsis eIF3e (INT-6) Associates with Both eIF3c and the COP9 Signalosome Subunit CSN7. Journal of Biological Chemistry, 2001, 276, 334-340.	3.4	74
48	Modular Domain Structure of Arabidopsis COP1. Reconstitution of Activity by Fragment Complementation and Mutational Analysis of a Nuclear Localization Signal in Planta. Plant Physiology, 2000, 124, 979-990.	4.8	45
49	Discrete Domains Mediate the Light-Responsive Nuclear and Cytoplasmic Localization of Arabidopsis COP1. Plant Cell, 1999, 11, 349.	6.6	0
50	Discrete Domains Mediate the Light-Responsive Nuclear and Cytoplasmic Localization of Arabidopsis COP1. Plant Cell, 1999, 11, 349-363.	6.6	131
51	A Novel Motif Mediates the Targeting of the Arabidopsis COP1 Protein to Subnuclear Foci. Journal of Biological Chemistry, 1999, 274, 27231-27236.	3.4	42
52	Phytochrome in the limelight. Trends in Plant Science, 1999, 4, 465-466.	8.8	4
53	Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene, 1998, 221, 35-43.	2.2	232
54	Genetic and Developmental Control of Nuclear Accumulation of COP1, a Repressor of Photomorphogenesis in Arabidopsis. Plant Physiology, 1997, 114, 779-788.	4.8	135

Albrecht G Von Arnim

#	Article	IF	CITATIONS
55	LIGHT CONTROL OF SEEDLING DEVELOPMENT. Annual Review of Plant Biology, 1996, 47, 215-243.	14.3	321
56	The COP9 Complex, a Novel Multisubunit Nuclear Regulator Involved in Light Control of a Plant Developmental Switch. Cell, 1996, 86, 115-121.	28.9	319
57	A role for transcriptional repression during light control of plant development. BioEssays, 1996, 18, 905-910.	2.5	32
58	Arabidopsis COP1 protein specifically interacts in vitro with a cytoskeleton-associated protein, CIP1 Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4239-4243.	7.1	69
59	Genetic and Molecular Analysis of an Allelic Series of cop1 Mutants Suggests Functional Roles for the Multiple Protein Domains. Plant Cell, 1994, 6, 487.	6.6	110
60	Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis Plant Cell, 1994, 6, 1391-1400.	6.6	164
61	Arabidopsis COP8, COP10, and COP11 Genes Are Involved in Repression of Photomorphogenic Development in Darkness. Plant Cell, 1994, 6, 629.	6.6	17
62	Light inactivation of arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell, 1994, 79, 1035-1045.	28.9	452
63	Detection and Possible Functions of African Cassava Mosaic Virus DNA B Gene Products. Virology, 1993, 192, 264-272.	2.4	59
64	Specificity of Bipartite Geminivirus Movement Proteins. Virology, 1993, 196, 666-673.	2.4	64
65	Isolation and characterization of a gene encoding a chlorophyll a/b-binding protein from mustard and the targeting of the encoded protein to the thylakoid membrane of pea chloroplasts in vitro. Plant Molecular Biology, 1992, 19, 277-287.	3.9	12
66	Determinants of tomato golden mosaic virus symptom development located on DNA B. Virology, 1992, 186, 286-293.	2.4	112
67	Inhibition of african cassava mosaic virus systemic infection by a movement protein from the related geminivirus tomato golden mosaic virus. Virology, 1992, 187, 555-564.	2.4	58