Gaelen R Burke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8842945/publications.pdf

Version: 2024-02-01

331670 330143 2,467 37 21 37 h-index citations g-index papers 39 39 39 2202 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Facultative Symbionts in Aphids and the Horizontal Transfer of Ecologically Important Traits. Annual Review of Entomology, 2010, 55, 247-266.	11.8	787
2	Massive Genomic Decay in Serratia symbiotica, a Recently Evolved Symbiont of Aphids. Genome Biology and Evolution, 2011, 3, 195-208.	2.5	186
3	Effects of facultative symbionts and heat stress on the metabolome of pea aphids. ISME Journal, 2010, 4, 242-252.	9.8	137
4	Distribution, Expression, and Motif Variability of Ankyrin Domain Genes in Wolbachia pipientis. Journal of Bacteriology, 2005, 187, 5136-5145.	2.2	126
5	Systematic analysis of a wasp parasitism arsenal. Molecular Ecology, 2014, 23, 890-901.	3.9	108
6	Polydnaviruses: Nature's Genetic Engineers. Annual Review of Virology, 2014, 1, 333-354.	6.7	90
7	Evolution and Diversity of Facultative Symbionts from the Aphid Subfamily Lachninae. Applied and Environmental Microbiology, 2009, 75, 5328-5335.	3.1	85
8	Widespread Genome Reorganization of an Obligate Virus Mutualist. PLoS Genetics, 2014, 10, e1004660.	3.5	83
9	Polydnavirus-wasp associations: evolution, genome organization, and function. Current Opinion in Virology, 2013, 3, 587-594.	5.4	81
10	Polydnaviruses: From discovery to current insights. Virology, 2015, 479-480, 393-402.	2.4	74
11	Deep Sequencing Identifies Viral and Wasp Genes with Potential Roles in Replication of Microplitis demolitor Bracovirus. Journal of Virology, 2012, 86, 3293-3306.	3.4	73
12	Mutualistic Polydnaviruses Share Essential Replication Gene Functions with Pathogenic Ancestors. PLoS Pathogens, 2013, 9, e1003348.	4.7	69
13	Polydnaviruses of Parasitic Wasps: Domestication of Viruses To Act as Gene Delivery Vectors. Insects, 2012, 3, 91-119.	2.2	58
14	Polydnaviruses as Symbionts and Gene Delivery Systems. PLoS Pathogens, 2012, 8, e1002757.	4.7	56
15	The Encapsidated Genome of Microplitis demolitor Bracovirus Integrates into the Host Pseudoplusia includens. Journal of Virology, 2011, 85, 11685-11696.	3.4	46
16	Rapid Viral Symbiogenesis via Changes in Parasitoid Wasp Genome Architecture. Molecular Biology and Evolution, 2018, 35, 2463-2474.	8.9	44
17	Dynamics of a Recurrent Buchnera Mutation That Affects Thermal Tolerance of Pea Aphid Hosts. Genetics, 2010, 186, 367-372.	2.9	38
18	Whole Genome Sequence of the Parasitoid Wasp <i>Microplitis demolitor</i> That Harbors an Endogenous Virus Mutualist. G3: Genes, Genomes, Genetics, 2018, 8, 2875-2880.	1.8	33

#	Article	IF	CITATIONS
19	Microplitis demolitor Bracovirus Proviral Loci and Clustered Replication Genes Exhibit Distinct DNA Amplification Patterns during Replication. Journal of Virology, 2015, 89, 9511-9523.	3.4	32
20	Dynamic Acquisition and Loss of Dual-Obligate Symbionts in the Plant-Sap-Feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea). Frontiers in Microbiology, 2017, 8, 1037.	3.5	30
21	Phylogenomics of Ichneumonoidea (Hymenoptera) and implications for evolution of mode of parasitism and viral endogenization. Molecular Phylogenetics and Evolution, 2021, 156, 107023.	2.7	30
22	Common themes in three independently derived endogenous nudivirus elements in parasitoid wasps. Current Opinion in Insect Science, 2019, 32, 28-35.	4.4	28
23	Polydnaviruses: Evolution and Function. Current Issues in Molecular Biology, 2020, 34, 163-182.	2.4	23
24	A Mutualistic Poxvirus Exhibits Convergent Evolution with Other Heritable Viruses in Parasitoid Wasps. Journal of Virology, 2020, 94, .	3.4	21
25	Permissiveness of lepidopteran hosts is linked to differential expression of bracovirus genes. Virology, 2016, 492, 259-272.	2.4	16
26	Characterization of a venom gland-associated rhabdovirus in the parasitoid wasp Diachasmimorpha longicaudata. Journal of Insect Physiology, 2016, 91-92, 48-55.	2.0	15
27	Partnering With a Pest: Genomes of Hemlock Woolly Adelgid Symbionts Reveal Atypical Nutritional Provisioning Patterns in Dual-Obligate Bacteria. Genome Biology and Evolution, 2018, 10, 1607-1621.	2.5	15
28	The Presence of Ancient Core Genes Reveals Endogenization from Diverse Viral Ancestors in Parasitoid Wasps. Genome Biology and Evolution, 2021, 13, .	2.5	14
29	Bracoviruses, ichnoviruses, and virus-like particles from parasitoid wasps retain many features of their virus ancestors. Current Opinion in Insect Science, 2022, 49, 93-100.	4.4	14
30	Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae). ISME Journal, 2022, 16, 642-654.	9.8	11
31	Genomic analysis reveals an exogenous viral symbiont with dual functionality in parasitoid wasps and their hosts. PLoS Pathogens, 2020, 16, e1009069.	4.7	10
32	MdBVe46 is an envelope protein that is required for virion formation by Microplitis demolitor bracovirus. Journal of General Virology, 2021, 102, .	2.9	6
33	The Complete Genome of <i>Chelonus insularis</i> Reveals Dynamic Arrangement of Genome Components in Parasitoid Wasps That Produce Bracoviruses. Journal of Virology, 2022, 96, JVI0157321.	3.4	6
34	A viral mutualist employs posthatch transmission for vertical and horizontal spread among parasitoid wasps. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120048119.	7.1	6
35	Analysis of Genetic Variation across the Encapsidated Genome of Microplitis demolitor Bracovirus in Parasitoid Wasps. PLoS ONE, 2016, 11, e0158846.	2.5	4
36	Ecological factors influencing the beneficial endosymbionts of the hemlock woolly adelgid (Hemiptera: Adelgidae). Insect Science, 2019, 26, 97-107.	3.0	3

#	Article	IF	CITATIONS
37	Identifying bracovirus and ichnovirus genes involved in virion morphogenesis. Current Opinion in Insect Science, 2022, 49, 63-70.	4.4	3