
Richard J. Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8842428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms. Annual Review of Genomics and Human Genetics, 2009, 10, 483-511.	6.2	683
2	Therapeutic potential of venom peptides. Nature Reviews Drug Discovery, 2003, 2, 790-802.	46.4	678
3	Ciguatera: recent advances but the risk remains. International Journal of Food Microbiology, 2000, 61, 91-125.	4.7	381
4	Conus Venom Peptide Pharmacology. Pharmacological Reviews, 2012, 64, 259-298.	16.0	372
5	Purification and characterization of ciguatoxins from moray eel (Lycodontis javanicus, Muraenidae). Toxicon, 1991, 29, 1115-1127.	1.6	293
6	The changing face of ciguatera. Toxicon, 2001, 39, 97-106.	1.6	291
7	Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nature Communications, 2014, 5, 3521.	12.8	275
8	Discovery, Synthesis, and Structure–Activity Relationships of Conotoxins. Chemical Reviews, 2014, 114, 5815-5847.	47.7	258
9	Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter. Nature Neuroscience, 2001, 4, 902-907.	14.8	233
10	Detection of Sodium Channel Toxins: Directed Cytotoxicity Assays of Purified Ciguatoxins, Brevetoxins, Saxitoxins, and Seafood Extracts. Journal of AOAC INTERNATIONAL, 1995, 78, 521-527.	1.5	219
11	Role of voltage-gated calcium channels in ascending pain pathways. Brain Research Reviews, 2009, 60, 84-89.	9.0	215
12	Ciguatera in Australia: Occurrence, clinical features, pathophysiology and management. Medical Journal of Australia, 1986, 145, 584-590.	1.7	204
13	Isolation and Characterization of a Cone Snail Protease with Homology to CRISP Proteins of the Pathogenesis-related Protein Superfamily. Journal of Biological Chemistry, 2003, 278, 31105-31110.	3.4	202
14	Novel ω-Conotoxins from Conus catus Discriminate among Neuronal Calcium Channel Subtypes. Journal of Biological Chemistry, 2000, 275, 35335-35344.	3.4	199
15	ÂO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17030-17035.	7.1	184
16	Deep Venomics Reveals the Mechanism for Expanded Peptide Diversity in Cone Snail Venom. Molecular and Cellular Proteomics, 2013, 12, 312-329.	3.8	180
17	Structure of Caribbean Ciguatoxin Isolated fromCaranx latus. Journal of the American Chemical Society, 1998, 120, 5914-5920.	13.7	179
18	Conotoxins: Chemistry and Biology. Chemical Reviews, 2019, 119, 11510-11549.	47.7	174

#	Article	IF	CITATIONS
19	Venomics: a new paradigm for natural products-based drug discovery. Amino Acids, 2011, 40, 15-28.	2.7	172
20	AChBP-targeted α-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. EMBO Journal, 2007, 26, 3858-3867.	7.8	159
21	Ichthyotoxicity of Chattonella marina (Raphidophyceae) to damselfish (Acanthochromis polycanthus): the synergistic role of reactive oxygen species and free fatty acids. Harmful Algae, 2003, 2, 273-281.	4.8	156
22	The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain, 2002, 96, 119-127.	4.2	155
23	Remarkable inter- and intra-species complexity of conotoxins revealed by LC/MS. Peptides, 2009, 30, 1222-1227.	2.4	152
24	Isolation and characterisation of Caribbean ciguatoxins from the horse-eye jack (Caranx latus). Toxicon, 1997, 35, 889-900.	1.6	151
25	Use of Venom Peptides to Probe Ion Channel Structure and Function. Journal of Biological Chemistry, 2010, 285, 13315-13320.	3.4	144
26	An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain, 2013, 154, 1749-1757.	4.2	144
27	Strain dependent production of ciguatoxin precursors (gambiertoxins) by Gambierdiscus toxicus (Dinophyceae) in culture. Toxicon, 1991, 29, 761-775.	1.6	143
28	Ciguatera: Australian perspectives on a global problem. Toxicon, 2006, 48, 799-809.	1.6	134
29	Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	134
30	Ciguatera Fish Poisoning in the Pacific Islands (1998 to 2008). PLoS Neglected Tropical Diseases, 2011, 5, e1416.	3.0	132
31	Isolation, Structure, and Activity of CID, a Novel α4/7-Conotoxin with an Extended N-terminal Sequence. Journal of Biological Chemistry, 2003, 278, 3137-3144.	3.4	129
32	Solving the α-Conotoxin Folding Problem: Efficient Selenium-Directed On-Resin Generation of More Potent and Stable Nicotinic Acetylcholine Receptor Antagonists. Journal of the American Chemical Society, 2010, 132, 3514-3522.	13.7	124
33	Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nature Communications, 2014, 5, 3165.	12.8	122
34	Isolation and characterisation of Indian Ocean ciguatoxin. Toxicon, 2002, 40, 685-693.	1.6	121
35	Origin and transfer of toxins involved in ciguatera. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1993, 106, 615-628.	0.5	120
36	Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Scientific Reports, 2017, 7, 40883.	3.3	120

#	Article	IF	CITATIONS
37	Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells. European Journal of Neuroscience, 2004, 20, 1-13.	2.6	117
38	Ciguatoxins: Cyclic Polyether Modulators of Voltage-gated Iion Channel Function. Marine Drugs, 2006, 4, 82-118.	4.6	115
39	Modulating Oxytocin Activity and Plasma Stability by Disulfide Bond Engineering. Journal of Medicinal Chemistry, 2010, 53, 8585-8596.	6.4	112
40	HPLC/Tandem Electrospray Mass Spectrometry for the Determination of Sub-ppb Levels of Pacific and Caribbean Ciguatoxins in Crude Extracts of Fish. Analytical Chemistry, 1999, 71, 247-250.	6.5	106
41	Ciguatera and mannitol: experience with a new treatment regimen. Medical Journal of Australia, 1989, 151, 77-80.	1.7	105
42	α-Conotoxin EpI, a Novel Sulfated Peptide from Conus episcopatusThat Selectively Targets Neuronal Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 1998, 273, 15667-15674.	3.4	103
43	Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO Journal, 2012, 31, 3795-3808.	7.8	103
44	alpha-Conotoxins as tools for the elucidation of structure and function of neuronal nicotinic acetylcholine receptor subtypes. FEBS Journal, 2004, 271, 2305-2319.	0.2	100
45	A Consensus Structure for ω-Conotoxins with Different Selectivities for Voltage-sensitive Calcium Channel Subtypes: Comparison of MVIIA, SVIB and SNX-202. Journal of Molecular Biology, 1996, 263, 297-310.	4.2	97
46	Conotoxins and their potential pharmaceutical applications. Drug Development Research, 1999, 46, 219-234.	2.9	97
47	Multiple ciguatoxins present in Indian Ocean reef fish. Toxicon, 2002, 40, 1347-1353.	1.6	97
48	Therapeutic Potential of Cone Snail Venom Peptides (Conopeptides). Current Topics in Medicinal Chemistry, 2012, 12, 1546-1552.	2.1	96
49	Structure-activity relationships of ?-conotoxins at N-type voltage-sensitive calcium channels. , 2000, 13, 55-70.		95
50	Analgesic Effects of GpTx-1, PF-04856264 and CNV1014802 in a Mouse Model of NaV1.7-Mediated Pain. Toxins, 2016, 8, 78.	3.4	94
51	Characterization of endogenous calcium responses in neuronal cell lines. Biochemical Pharmacology, 2010, 79, 908-920.	4.4	90
52	Purification and characterisation of large and small maitotoxins from cultured gambierdiscus toxicus. Natural Toxins, 1994, 2, 64-72.	1.0	88
53	Solution structure and proposed binding mechanism of a novel potassium channel toxin κ-conotoxin PVIIA. Structure, 1997, 5, 1585-1597.	3.3	88
54	Characterisation of multiple Caribbean ciguatoxins and congeners in individual specimens of horse-eye jack (Caranx latus) by high-performance liquid chromatography/mass spectrometry. Toxicon, 2002, 40, 929-939.	1.6	85

#	Article	IF	CITATIONS
55	Ϊ‰-Conotoxin CVID Inhibits a Pharmacologically Distinct Voltage-sensitive Calcium Channel Associated with Transmitter Release from Preganglionic Nerve Terminals. Journal of Biological Chemistry, 2003, 278, 4057-4062.	3.4	85
56	Toxicity of Australian and French Polynesian strains of Gambierdiscus Toxicus (Dinophyceae) grown in culture: Characterization of a new type of maitotoxin. Toxicon, 1990, 28, 1159-1172.	1.6	84
57	Cooliatoxin, the first toxin fromCoolia monotis (dinophyceae). Natural Toxins, 1995, 3, 355-362.	1.0	84
58	ldentification of Caribbean ciguatoxins as the cause of an outbreak of fish poisoning among U.S. soldiers in Haiti. Toxicon, 1997, 35, 733-741.	1.6	84
59	Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains. Molecular and Cellular Proteomics, 2013, 12, 651-663.	3.8	83
60	Multiple ciguatoxins in the flesh of fish. Toxicon, 1992, 30, 915-919.	1.6	82
61	α-Conotoxin ImI Incorporating Stable Cystathionine Bridges Maintains Full Potency and Identical Three-Dimensional Structure. Journal of the American Chemical Society, 2011, 133, 15866-15869.	13.7	81
62	Structure-activity relationships of ω-conotoxins MVIIA, MVIIC and 14 loop splice hybrids at N and P/Q-type calcium channels 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 289, 1405-1421.	4.2	80
63	Structures of μO-conotoxins from Conus marmoreus. Journal of Biological Chemistry, 2004, 279, 25774-25782.	3.4	80
64	Chemical and Functional Identification and Characterization of Novel Sulfated α-Conotoxins from the Cone SnailConusanemone. Journal of Medicinal Chemistry, 2004, 47, 1234-1241.	6.4	80
65	Ciguatoxins are potent ichthyotoxins. Toxicon, 1992, 30, 207-211.	1.6	78
66	Anti-allodynic efficacy of the χ-conopeptide, Xen2174, in rats with neuropathic pain. Pain, 2005, 118, 112-124.	4.2	78
67	Conopressin-T from Conus tulipa Reveals an Antagonist Switch in Vasopressin-like Peptides. Journal of Biological Chemistry, 2008, 283, 7100-7108.	3.4	76
68	Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons. Toxicology and Applied Pharmacology, 2005, 204, 175-186.	2.8	75
69	Rapid extraction combined with LC-tandem mass spectrometry (CREM-LC/MS/MS) for the determination of ciguatoxins in ciguateric fish flesh. Toxicon, 2009, 54, 62-66.	1.6	75
70	The α2δAuxiliary Subunit Reduces Affinity of ω-Conotoxins for Recombinant N-type (Cav2.2) Calcium Channels. Journal of Biological Chemistry, 2004, 279, 34705-34714.	3.4	74
71	Seven novel modulators of the analgesic target <scp>Na_V</scp> 1.7 uncovered using a highâ€throughput venomâ€based discovery approach. British Journal of Pharmacology, 2015, 172, 2445-2458.	5.4	74
72	Solution Structure of μ-Conotoxin PIIIA, a Preferential Inhibitor of Persistent Tetrodotoxin-sensitive Sodium Channels. Journal of Biological Chemistry, 2002, 277, 27247-27255.	3.4	72

#	Article	IF	CITATIONS
73	Cone snail venomics: from novel biology to novel therapeutics. Future Medicinal Chemistry, 2014, 6, 1659-1675.	2.3	72
74	ldentification and Characterization of ProTx-III [<i>μ</i> -TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula <i>Thrixopelma pruriens</i> . Molecular Pharmacology, 2015, 88, 291-303.	2.3	72
75	Sodium channels and pain: from toxins to therapies. British Journal of Pharmacology, 2018, 175, 2138-2157.	5.4	72
76	Single Amino Acid Substitutions in α-Conotoxin PnIA Shift Selectivity for Subtypes of the Mammalian Neuronal Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 1999, 274, 36559-36564.	3.4	71
77	Human fatality associated with Pacific ciguatoxin contaminated fish. Toxicon, 2010, 56, 668-673.	1.6	71
78	Determination of the Solution Structures of Conantokin-G and Conantokin-T by CD and NMR Spectroscopy. Journal of Biological Chemistry, 1997, 272, 2291-2299.	3.4	70
79	Identification of a Novel Class of Nicotinic Receptor Antagonists. Journal of Biological Chemistry, 2006, 281, 24745-24755.	3.4	70
80	χ-Conopeptide Pharmacophore Development: Toward a Novel Class of Norepinephrine Transporter Inhibitor (Xen2174) for Pain. Journal of Medicinal Chemistry, 2009, 52, 6991-7002.	6.4	70
81	Transcriptomic Messiness in the Venom Duct of Conus miles Contributes to Conotoxin Diversity. Molecular and Cellular Proteomics, 2013, 12, 3824-3833.	3.8	70
82	Characterization of ciguatoxins and ciguatoxin congeners present in ciguateric fish by gradient reverse-phase high-performance liquid chromatography/mass spectrometry. Toxicon, 1997, 35, 159-168.	1.6	69
83	Synthesis, Structure Elucidation, in Vitro Biological Activity, Toxicity, and Caco-2 Cell Permeability of Lipophilic Analogues of α-Conotoxin MII. Journal of Medicinal Chemistry, 2003, 46, 1266-1272.	6.4	69
84	α-Conotoxin AulB Isomers Exhibit Distinct Inhibitory Mechanisms and Differential Sensitivity to Stoichiometry of α3β4 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2010, 285, 22254-22263.	3.4	69
85	β2 Subunit Contribution to 4/7 α-Conotoxin Binding to the Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2005, 280, 30460-30468.	3.4	67
86	Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Scientific Reports, 2017, 7, 42810.	3.3	67
87	Differential actions of pacific ciguatoxin-1 on sodium channel subtypes in mammalian sensory neurons. Journal of Pharmacology and Experimental Therapeutics, 1999, 288, 379-88.	2.5	67
88	High-Threshold Mechanosensitive Ion Channels Blocked by a Novel Conopeptide Mediate Pressure-Evoked Pain. PLoS ONE, 2007, 2, e515.	2.5	66
89	Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells. Biochemical Pharmacology, 2012, 83, 1562-1571.	4.4	64
90	Lonspray mass spectrometry of ciguatoxin-1, maitotoxin-2 and -3, and related marine polyether toxins. Natural Toxins, 1994, 2, 56-63.	1.0	63

#	Article	IF	CITATIONS
91	Isolation and Structure-Activity of μ-Conotoxin TIIIA, A Potent Inhibitor of Tetrodotoxin-Sensitive Voltage-Gated Sodium Channels. Molecular Pharmacology, 2007, 71, 676-685.	2.3	63
92	Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail <i>Conus catus</i> . Journal of Proteome Research, 2015, 14, 4372-4381.	3.7	62
93	Synthesis and biological evaluation of nonpeptide mimetics of ω-conotoxin GVIA. Bioorganic and Medicinal Chemistry, 2004, 12, 4025-4037.	3.0	61
94	Toxin insights into nicotinic acetylcholine receptors. Biochemical Pharmacology, 2006, 72, 661-670.	4.4	61
95	Inhibition of the Norepinephrine Transporter by the Venom Peptide χ-MrIA. Journal of Biological Chemistry, 2003, 278, 40317-40323.	3.4	60
96	Systematic interrogation of the Conus marmoreus venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13 new gene superfamilies. BMC Genomics, 2013, 14, 708.	2.8	59
97	Rapid Extraction and Identification of Maitotoxin and Ciguatoxin-Like Toxins from Caribbean and Pacific Gambierdiscus Using a New Functional Bioassay. PLoS ONE, 2016, 11, e0160006.	2.5	59
98	Identification of slow and fast-acting toxins in a highly ciguatoxic barracuda (Sphyraena barracuda) by HPLC/MS and radiolabelled ligand binding. Toxicon, 2003, 42, 663-672.	1.6	58
99	N-type Calcium Channel Blockers: Novel Therapeutics for the Treatment of Pain. Medicinal Chemistry, 2006, 2, 535-543.	1.5	58
100	Transcriptomic and behavioural characterisation of a mouse model of burn pain identify the cholecystokinin 2 receptor as an analgesic target. Molecular Pain, 2016, 12, 174480691666536.	2.1	58
101	Analgesic ω-Conotoxins CVIE and CVIF Selectively and Voltage-Dependently Block Recombinant and Native N-Type Calcium Channels. Molecular Pharmacology, 2010, 77, 139-148.	2.3	57
102	The 1.1 à Resolution Crystal Structure of [Tyr15]Epl, a Novel α-Conotoxin fromConus episcopatus, Solved by Direct Methodsâ€. Biochemistry, 1998, 37, 11425-11433.	2.5	56
103	The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Reports, 2009, 10, 997-1002.	4.5	55
104	Allosteric α1-Adrenoreceptor Antagonism by the Conopeptide ϕTIA. Journal of Biological Chemistry, 2003, 278, 34451-34457.	3.4	54
105	Isolation, characterization and total regioselective synthesis of the novel μO-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels. Biochemical Pharmacology, 2012, 84, 540-548.	4.4	54
106	Ciguatera and mannitol: In Vivo and In Vitro assessment in mice. Toxicon, 1993, 31, 1039-1050.	1.6	52
107	The role of defensive ecological interactions in theÂevolution of conotoxins. Molecular Ecology, 2016, 25, 598-615.	3.9	52
108	Ciguatoxin from the flesh and viscera of the barracuda, Sphyraena jello. Toxicon, 1984, 22, 805-810.	1.6	51

#	Article	IF	CITATIONS
109	χ-Conotoxin and Tricyclic Antidepressant Interactions at the Norepinephrine Transporter Define a New Transporter Model. Journal of Biological Chemistry, 2007, 282, 17837-17844.	3.4	51
110	Analgesic treatment of ciguatoxin-induced cold allodynia. Pain, 2013, 154, 1999-2006.	4.2	51
111	Isolation and characterization of α-conotoxin LsIA with potent activity at nicotinic acetylcholine receptors. Biochemical Pharmacology, 2013, 86, 791-799.	4.4	51
112	Chemical Engineering and Structural and Pharmacological Characterization of the α-Scorpion Toxin OD1. ACS Chemical Biology, 2013, 8, 1215-1222.	3.4	50
113	Expression and Pharmacology of Endogenous Cav Channels in SH-SY5Y Human Neuroblastoma Cells. PLoS ONE, 2013, 8, e59293.	2.5	50
114	Atypical α-Conotoxin LtIA from Conus litteratus Targets a Novel Microsite of the α3β2 Nicotinic Receptor. Journal of Biological Chemistry, 2010, 285, 12355-12366.	3.4	49
115	2â€Nitroveratryl as a Photocleavable Thiolâ€Protecting Group for Directed Disulfide Bond Formation in the Chemical Synthesis of Insulin. Chemistry - A European Journal, 2014, 20, 9549-9552.	3.3	48
116	Effects of Chirality at Tyr13 on the Structureâ^'Activity Relationships of ω-Conotoxins from Conus magus. Biochemistry, 1999, 38, 6741-6751.	2.5	47
117	Computational approaches to understand alpha-conotoxin interactions at neuronal nicotinic receptors. FEBS Journal, 2004, 271, 2327-2334.	0.2	47
118	Towards an integrated venomics approach for accelerated conopeptide discovery. Toxicon, 2012, 60, 470-477.	1.6	47
119	Conotoxins as selective inhibitors of neuronal ion channels, receptors and transporters. IUBMB Life, 2004, 56, 89-93.	3.4	46
120	Modulatory features of the novel spider toxin μâ€TRTXâ€Df1a isolated from the venom of the spider <i>Davus fasciatus</i> . British Journal of Pharmacology, 2017, 174, 2528-2544.	5.4	46
121	Ciguatoxin-2 is a diastereomer of ciguatoxin-3. Toxicon, 1993, 31, 637-643.	1.6	45
122	Ciguatoxin (CTX-1) modulates single tetrodotoxin-sensitive sodium channels in rat parasympathetic neurones. Neuroscience Letters, 1998, 252, 103-106.	2.1	45
123	Analysis of toxin profiles in three different fish species causing ciguatera fish poisoning in Guadeloupe, French West Indies. Food Additives and Contaminants, 2002, 19, 1034-1042.	2.0	45
124	α-Conotoxins EpI and AuIB switch subtype selectivity and activity in native versus recombinant nicotinic acetylcholine receptors. FEBS Letters, 2003, 554, 219-223.	2.8	45
125	Emerging opportunities for allosteric modulation of G-protein coupled receptors. Biochemical Pharmacology, 2013, 85, 153-162.	4.4	45
126	Stabilization of the Cysteineâ€Rich Conotoxin MrIA by Using a 1,2,3â€Triazole as a Disulfide Bond Mimetic. Angewandte Chemie - International Edition, 2015, 54, 1361-1364.	13.8	45

#	Article	IF	CITATIONS
127	Neuronal Nicotinic Acetylcholine Receptor Modulators from Cone Snails. Marine Drugs, 2018, 16, 208.	4.6	45
128	Direct and indirect effects of ciguatoxin on guinea-pig atria and papillary muscles. Naunyn-Schmiedeberg's Archives of Pharmacology, 1986, 334, 313-322.	3.0	44
129	Analgesic effects of clinically used compounds in novel mouse models of polyneuropathy induced by oxaliplatin and cisplatin. Neuro-Oncology, 2014, 16, 1324-1332.	1.2	44
130	Toxicology of Gambierdiscus spp. (Dinophyceae) from Tropical and Temperate Australian Waters. Marine Drugs, 2018, 16, 7.	4.6	44
131	Recovery of ciguatoxin from fish flesh. Toxicon, 1993, 31, 1333-1336.	1.6	43
132	Ability of some plant extracts, traditionally used to treat ciguatera fish poisoning, to prevent the in vitro neurotoxicity produced by sodium channel activators. Toxicon, 2005, 46, 625-634.	1.6	43
133	Neuronally Selective μ-Conotoxins from Conus striatus Utilize an α-Helical Motif to Target Mammalian Sodium Channels. Journal of Biological Chemistry, 2008, 283, 21621-21628.	3.4	43
134	Structure–Function and Therapeutic Potential of Spider Venom-Derived Cysteine Knot Peptides Targeting Sodium Channels. Frontiers in Pharmacology, 2019, 10, 366.	3.5	43
135	Isolation and Characterization of Peptides from <i>Momordica cochinchinensis</i> Seeds. Journal of Natural Products, 2009, 72, 1453-1458.	3.0	42
136	Ciguatera Fish Poisoning in the Caribbean Islands and Western Atlantic. Reviews of Environmental Contamination and Toxicology, 2001, 168, 99-141.	1.3	40
137	Determination ofα-conotoxin binding modes on neuronal nicotinic acetylcholine receptors. Journal of Molecular Recognition, 2004, 17, 339-347.	2.1	40
138	Conotoxins: Molecular and Therapeutic Targets. Progress in Molecular and Subcellular Biology, 2009, 46, 45-65.	1.6	40
139	Solution structure of χ-conopeptide MrIA, a modulator of the human norepinephrine transporter. Biopolymers, 2005, 80, 815-823.	2.4	39
140	Isolation and characterisation of conomap-Vt, ad-amino acid containing excitatory peptide from the venom of a vermivorous cone snail. FEBS Letters, 2006, 580, 3860-3866.	2.8	39
141	Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose. Toxicon, 2014, 91, 135-144.	1.6	39
142	Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Frontiers in Neuroscience, 2020, 14, 609005.	2.8	39
143	Brevenal Inhibits Pacific Ciguatoxin-1B-Induced Neurosecretion from Bovine Chromaffin Cells. PLoS ONE, 2008, 3, e3448.	2.5	39
144	Cloning and characterisation of natriuretic peptides from the venom glands of Australian elapids. Biochimie, 2006, 88, 1923-1931.	2.6	38

#	Article	IF	CITATIONS
145	Inhibition of Neuronal Nicotinic Acetylcholine Receptor Subtypes by α-Conotoxin GID and Analogues*. Journal of Biological Chemistry, 2009, 284, 4944-4951.	3.4	38
146	Isolation and Characterization of Conopeptides by High-performance Liquid Chromatography Combined with Mass Spectrometry and Tandem Mass Spectrometry. , 1996, 10, 138-143.		37
147	Amplified Cold Transduction in Native Nociceptors by M-Channel Inhibition. Journal of Neuroscience, 2013, 33, 16627-16641.	3.6	37
148	Development of a $\hat{1}$ 4O-Conotoxin Analogue with Improved Lipid Membrane Interactions and Potency for the Analgesic Sodium Channel NaV1.8. Journal of Biological Chemistry, 2016, 291, 11829-11842.	3.4	37
149	A Short Synthesis of the A/B Ring Systems of the Pacific Ciguatoxins P-CTX-3C and Dihydroxy-P-CTX-3C. Journal of Organic Chemistry, 1999, 64, 8396-8398.	3.2	36
150	Ciguatoxin-induced oscillations in membrane potential and action potential firing in rat parasympathetic neurons. European Journal of Neuroscience, 2002, 16, 242-248.	2.6	36
151	Discovery and development of the χ-conopeptide class of analgesic peptides. Toxicon, 2012, 59, 524-528.	1.6	36
152	Structureâ^'Activity Studies of Conantokins as Human N-Methyl-d-aspartate Receptor Modulators,. Journal of Medicinal Chemistry, 1999, 42, 415-426.	6.4	35
153	Overexpressed Cavl²3 Inhibits N-type (Cav2.2) Calcium Channel Currents through a Hyperpolarizing Shift of "Ultra-slow―and "Closed-state―Inactivation. Journal of General Physiology, 2004, 123, 401-416.	1.9	35
154	Venom Peptides as a Rich Source of Cav2.2 Channel Blockers. Toxins, 2013, 5, 286-314.	3.4	35
155	Multiple actions of φ-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8906-8911.	7.1	35
156	Development of small molecules that mimic the binding of ω-conotoxins at the N-type voltage-gated calcium channel. Molecular Diversity, 2004, 8, 127-134.	3.9	34
157	The role of group I metabotropic glutamate receptors in neuronal excitotoxicity in alzheimer's disease. Neurotoxicity Research, 2005, 7, 125-141.	2.7	34
158	Novel αD-Conopeptides and Their Precursors Identified by cDNA Cloning Define the D-Conotoxin Superfamily. Biochemistry, 2009, 48, 3717-3729.	2.5	34
159	Subtle modifications to oxytocin produce ligands that retain potency and improved selectivity across species. Science Signaling, 2017, 10, .	3.6	34
160	Neuroprotectant effects of iso-osmolar d-mannitol to prevent Pacific ciguatoxin-1 induced alterations in neuronal excitability: A comparison with other osmotic agents and free radical scavengers. Neuropharmacology, 2005, 49, 669-686.	4.1	33
161	Therapeutic opportunities for targeting cold pain pathways. Biochemical Pharmacology, 2015, 93, 125-140.	4.4	33
162	The structure, dynamics and selectivity profile of a NaV1.7 potency-optimised huwentoxin-IV variant. PLoS ONE, 2017, 12, e0173551.	2.5	33

#	Article	IF	CITATIONS
163	Vicinal Disulfide Constrained Cyclic Peptidomimetics: a Turn Mimetic Scaffold Targeting the Norepinephrine Transporter. Angewandte Chemie - International Edition, 2013, 52, 12020-12023.	13.8	32
164	Ecology of the ciguatera causing dinoflagellates from the Northern Great Barrier Reef: Changes in community distribution and coastal eutrophication. Marine Pollution Bulletin, 2013, 77, 210-219.	5.0	32
165	α-Conotoxin Dendrimers Have Enhanced Potency and Selectivity for Homomeric Nicotinic Acetylcholine Receptors. Journal of the American Chemical Society, 2015, 137, 3209-3212.	13.7	32
166	Australian funnel-web spiders evolved human-lethal δ-hexatoxins for defense against vertebrate predators. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24920-24928.	7.1	32
167	Subtype-selective Noncompetitive or Competitive Inhibition of Human α1-Adrenergic Receptors by ϕTIA. Journal of Biological Chemistry, 2004, 279, 35326-35333.	3.4	31
168	Natural Product Ligands of TRP Channels. Advances in Experimental Medicine and Biology, 2011, 704, 41-85.	1.6	31
169	MrIC, a Novel α-Conotoxin Agonist in the Presence of PNU at Endogenous α7 Nicotinic Acetylcholine Receptors. Biochemistry, 2014, 53, 1-3.	2.5	31
170	Design, Synthesis and Biological Evaluation of Two Opioid Agonist and Ca _v 2.2 Blocker Multitarget Ligands. Chemical Biology and Drug Design, 2015, 86, 156-162.	3.2	31
171	Crotalphine desensitizes TRPA1 ion channels to alleviate inflammatory hyperalgesia. Pain, 2016, 157, 2504-2516.	4.2	31
172	Occurrence of a ciguatoxin-like substance in the Spanish mackerel (Scomberomorus commersoni). Toxicon, 1983, 21, 19-24.	1.6	30
173	Molecular Engineering of Conotoxins: The Importance of Loop Size to α-Conotoxin Structure and Function. Journal of Medicinal Chemistry, 2008, 51, 5575-5584.	6.4	30
174	Conotoxin Venom Peptide Therapeutics. Advances in Experimental Medicine and Biology, 2009, 655, 44-48.	1.6	30
175	Venomics-Accelerated Cone Snail Venom Peptide Discovery. International Journal of Molecular Sciences, 2018, 19, 788.	4.1	30
176	Ciguatera: Ecological, clinical, and socioeconomic perspectives. Critical Reviews in Environmental Science and Technology, 1993, 23, 137-156.	12.8	29
177	Emerging structure–function relationships defining monoamine NSS transporter substrate and ligand affinity. Biochemical Pharmacology, 2010, 79, 1083-1091.	4.4	29
178	δ-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150817.	2.6	29
179	Structural mechanisms for α-conotoxin activity at the human α3β4 nicotinic acetylcholine receptor. Scientific Reports, 2017, 7, 45466.	3.3	29
180	Spider Knottin Pharmacology at Voltage-Gated Sodium Channels and Their Potential to Modulate Pain Pathways. Toxins, 2019, 11, 626.	3.4	29

#	Article	IF	CITATIONS
181	Negative inotropic and arrhythmic effects of high doses of ciguatoxin on guinea-pig atria and papillary muscles. Toxicon, 1988, 26, 639-649.	1.6	28
182	Action of ciguatoxin on human atrial trabeculae. Toxicon, 1992, 30, 907-914.	1.6	28
183	Adenosine Triphosphate Acts as Both a Competitive Antagonist and a Positive Allosteric Modulator at Recombinant N-Methyl-D-aspartate Receptors. Molecular Pharmacology, 2004, 65, 1386-1396.	2.3	28
184	Synthesis and biological evaluation of anthranilamide-based non-peptide mimetics of ω-conotoxin GVIA. Tetrahedron, 2006, 62, 7284-7292.	1.9	28
185	Oral absorption and in vivo biodistribution of α-conotoxin MII and a lipidic analogue. Biochemical and Biophysical Research Communications, 2007, 361, 97-102.	2.1	28
186	Conopeptide-Derived κ-Opioid Agonists (Conorphins): Potent, Selective, and Metabolic Stable Dynorphin A Mimetics with Antinociceptive Properties. Journal of Medicinal Chemistry, 2016, 59, 2381-2395.	6.4	28
187	A spider-venom peptide with multitarget activity on sodium and calcium channels alleviates chronic visceral pain in a model of irritable bowel syndrome. Pain, 2021, 162, 569-581.	4.2	28
188	Ciguatera in Australia. Occurrence, clinical features, pathophysiology and management. Medical Journal of Australia, 1986, 145, 584-90.	1.7	28
189	ï‰-Conotoxins GVIA, MVIIA and CVID: SAR and Clinical Potential. Marine Drugs, 2006, 4, 193-214.	4.6	27
190	?-Conotoxin CVIB differentially inhibits native and recombinant N- and P/Q-type calcium channels. European Journal of Neuroscience, 2007, 25, 435-444.	2.6	27
191	Pharmacology of predatory and defensive venom peptides in cone snails. Molecular BioSystems, 2017, 13, 2453-2465.	2.9	27
192	Lophozozymus pictor toxin: A fluorescent structural isomer of palytoxin. Toxicon, 1995, 33, 1373-1377.	1.6	26
193	Spermine modulation of the glutamatenmda receptor is differentially responsive to conantokins in n normal and Alzheimer's disease human cerebral cortex. Journal of Neurochemistry, 2002, 81, 765-779.	3.9	26
194	Transcriptome and proteome of <i>Conus planorbis</i> identify the nicotinic receptors as primary target for the defensive venom. Proteomics, 2015, 15, 4030-4040.	2.2	26
195	Spinal actions of ωâ€conotoxins, <scp>CVID</scp> , <scp>MVIIA</scp> and related peptides in a rat neuropathic pain model. British Journal of Pharmacology, 2013, 170, 245-254.	5.4	25
196	High-voltage-activated calcium current subtypes in mouse DRG neurons adapt in a subpopulation-specific manner after nerve injury. Journal of Neurophysiology, 2015, 113, 1511-1519.	1.8	25
197	Conotoxin Φâ€MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Antiâ€Apoptotic Activity. Angewandte Chemie - International Edition, 2017, 56, 14973-14976.	13.8	25
198	A Queensland family with ciguatera after eating coral trout. Medical Journal of Australia, 1997, 166, 473-475.	1.7	24

#	Article	IF	CITATIONS
199	Intraspecific variations in Conus purpurascens injected venom using LC/MALDI-TOF-MS and LC-ESI-TripleTOF-MS. Analytical and Bioanalytical Chemistry, 2015, 407, 6105-6116.	3.7	24
200	Ion Channel Toxins and Therapeutics: From Cone Snail Venoms to Ciguatera. Therapeutic Drug Monitoring, 2000, 22, 61-64.	2.0	24
201	Electrical activity in rat tail artery during asynchronous activation of postganglionic nerve terminals by ciguatoxinâ€1. British Journal of Pharmacology, 1995, 116, 2213-2220.	5.4	23
202	Emerging tropical diseases in Australia. Part 2. Ciguatera fish poisoning. Annals of Tropical Medicine and Parasitology, 2010, 104, 557-571.	1.6	23
203	Conopeptide ϕTIA Defines a New Allosteric Site on the Extracellular Surface of the α1B-Adrenoceptor. Journal of Biological Chemistry, 2013, 288, 1814-1827.	3.4	23
204	Isolation and Structural and Pharmacological Characterization of α-Elapitoxin-Dpp2d, an Amidated Three Finger Toxin from Black Mamba Venom. Biochemistry, 2014, 53, 3758-3766.	2.5	23
205	Neurotoxicity fingerprinting of venoms using on-line microfluidic AChBP profiling. Toxicon, 2018, 148, 213-222.	1.6	23
206	Mechanisms involved in the swelling of erythrocytes caused by Pacific and Caribbean ciguatoxins. Blood Cells, Molecules, and Diseases, 2006, 36, 1-9.	1.4	22
207	Phorbasins G–K: new cytotoxic diterpenes from a southern Australian marine sponge, Phorbas sp Organic and Biomolecular Chemistry, 2008, 6, 3811.	2.8	22
208	Low molecular weight non-peptide mimics of ω-conotoxin GVIA. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2763-2765.	2.2	22
209	Chemical Synthesis and Structure of the Prokineticin Bv8. ChemBioChem, 2010, 11, 1882-1888.	2.6	22
210	Ciguatoxin-induced catecholamine secretion in bovine chromaffin cells: Mechanism of action and reversible inhibition by brevenal. Toxicon, 2010, 56, 792-796.	1.6	22
211	Discovery and mode of action of a novel analgesic β-toxin from the African spider Ceratogyrus darlingi. PLoS ONE, 2017, 12, e0182848.	2.5	22
212	Transcriptomics in pain research: insights from new and old technologies. Molecular Omics, 2018, 14, 389-404.	2.8	22
213	Novel analgesic ω-conotoxins from the vermivorous cone snail Conus moncuri provide new insights into the evolution of conopeptides. Scientific Reports, 2018, 8, 13397.	3.3	22
214	Pacific Ciguatoxinâ€1 associated with a large commonâ€source outbreak of Ciguatera in East Arnhem Land, Australia. Natural Toxins, 1997, 5, 136-140.	1.0	21
215	Mode of action of ciguatoxin from the Spanish Mackerel, Scomberomorus commersoni, on the guinea-pig ileum and vas deferens. Journal of Pharmacology and Experimental Therapeutics, 1984, 228, 756-60.	2.5	21
216	Sub-nanomolar concentrations of ciguatoxin-1 excite preganglionic terminals in guinea pig sympathetic ganglia. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 352, 236-46.	3.0	20

#	Article	IF	CITATIONS
217	χ-Conopeptide MrIA Partially Overlaps Desipramine and Cocaine Binding Sites on the Human Norepinephrine Transporter. Journal of Biological Chemistry, 2003, 278, 40324-40329.	3.4	20
218	ω-Conotoxin GVIA Mimetics that Bind and Inhibit Neuronal Cav2.2 Ion Channels. Marine Drugs, 2012, 10, 2349-2368.	4.6	20
219	Hydrophobic residues at position 10 of α-conotoxin PnIA influence subtype selectivity between α7 and α3β2 neuronal nicotinic acetylcholine receptors. Biochemical Pharmacology, 2014, 91, 534-542.	4.4	20
220	Venomics Reveals Venom Complexity of the Piscivorous Cone Snail, Conus tulipa. Marine Drugs, 2019, 17, 71.	4.6	20
221	Socioeconomic impacts and management ciguatera in the Pacific. Bulletin De La Societe De Pathologie Exotique, 1992, 85, 427-34.	0.3	20
222	Differential antagonism by conotoxin ϕTIA of contractions mediated by distinct α1-adrenoceptor subtypes in rat vas deferens, spleen and aorta. European Journal of Pharmacology, 2005, 508, 183-192.	3.5	19
223	Transcriptomic-Proteomic Correlation in the Predation-Evoked Venom of the Cone Snail, Conus imperialis. Marine Drugs, 2019, 17, 177.	4.6	19
224	Comparative action of three major ciguatoxins on guinea-pig atria and ilea. Toxicon, 1993, 31, 437-446.	1.6	18
225	Differential expression of calcium channels in sympathetic and parasympathetic preganglionic inputs to neurons in paracervical ganglia of guinea-pigs. Neuroscience, 2004, 127, 455-466.	2.3	18
226	A Second Extracellular Site Is Required for Norepinephrine Transport by the Human Norepinephrine Transporter. Molecular Pharmacology, 2012, 82, 898-909.	2.3	18
227	NMDA receptor subunit-dependent modulation by conantokin-G and Ala(7)-conantokin-G. Journal of Neurochemistry, 2006, 96, 283-291.	3.9	17
228	ω-Conotoxin GVIA mimetics based on an anthranilamide core: Effect of variation in ammonium side chain lengths and incorporation of fluorine. Bioorganic and Medicinal Chemistry, 2009, 17, 6659-6670.	3.0	17
229	Activation of κ Opioid Receptors in Cutaneous Nerve Endings by Conorphin-1, a Novel Subtype-Selective Conopeptide, Does Not Mediate Peripheral Analgesia. ACS Chemical Neuroscience, 2015, 6, 1751-1758.	3.5	17
230	An efficient transcriptome analysis pipeline to accelerate venom peptide discovery and characterisation. Toxicon, 2015, 107, 282-289.	1.6	17
231	Release of neuropeptides from a neuro-cutaneous co-culture model: A novel inÂvitro model for studying sensory effects of ciguatoxins. Toxicon, 2016, 116, 4-10.	1.6	17
232	Critical Review and Conceptual and Quantitative Models for the Transfer and Depuration of Ciguatoxins in Fishes. Toxins, 2021, 13, 515.	3.4	17
233	Miniaturized Bioaffinity Assessment Coupled to Mass Spectrometry for Guided Purification of Bioactives from Toad and Cone Snail. Biology, 2014, 3, 139-156.	2.8	16
234	α-conotoxin MrIC is a biased agonist at α7 nicotinic acetylcholine receptors. Biochemical Pharmacology, 2015, 94, 155-163.	4.4	16

#	Article	IF	CITATIONS
235	The tarantula toxin \hat{l}^2/\hat{l} -TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Scientific Reports, 2017, 7, 974.	3.3	16
236	Lethal effects of an insecticidal spider venom peptide involve positive allosteric modulation of insect nicotinic acetylcholine receptors. Neuropharmacology, 2017, 127, 224-242.	4.1	16
237	Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes NaV1.9, NaV1.7 and NaV1.1. Marine Drugs, 2017, 15, 269.	4.6	16
238	Purification of ciguatoxin-like material from Scomberomorus commersoni and its effect on the rat phrenic nerve-diaphragm. Toxicon, 1983, 21, 249-252.	1.6	15
239	Analysis of Caribbean ciguatoxin-1 effects on frog myelinated axons and the neuromuscular junction. Toxicon, 2010, 56, 759-767.	1.6	15
240	Biophysical properties of Na _v 1.8/Na _v 1.2 chimeras and inhibition by µO onotoxin MrVIB. British Journal of Pharmacology, 2012, 166, 2148-2160.	5.4	15
241	Flow Cytometric-Membrane Potential Detection of Sodium Channel Active Marine Toxins: Application to Ciguatoxins in Fish Muscle and Feasibility of Automating Saxitoxin Detection. Journal of AOAC INTERNATIONAL, 2014, 97, 299-306.	1.5	15
242	A crinotoxin from the skin tubercle glands of a stonefish (Synanceia trachynis). Toxicon, 1981, 19, 159-170.	1.6	14
243	Efficient chemical synthesis of human complement protein C3a. Chemical Communications, 2013, 49, 2356.	4.1	14
244	Mutations in the NPxxY motif stabilize pharmacologically distinct conformational states of the α _{1B} - and β ₂ -adrenoceptors. Science Signaling, 2019, 12, .	3.6	14
245	Conotoxin engineering: dual pharmacophoric noradrenaline transport inhibitor/integrin binding peptide with improved stability. Organic and Biomolecular Chemistry, 2012, 10, 5791.	2.8	13
246	Pharmacological characterization of α-elapitoxin-Al2a from the venom of the Australian pygmy copperhead (Austrelaps labialis): An atypical long-chain α-neurotoxin with only weak affinity for α7 nicotinic receptors. Biochemical Pharmacology, 2012, 84, 851-863.	4.4	13
247	Ionic mechanisms of spinal neuronal cold hypersensitivity in ciguatera. European Journal of Neuroscience, 2015, 42, 3004-3011.	2.6	13
248	Accelerated proteomic visualization of individual predatory venoms of Conus purpurascens reveals separately evolved predation-evoked venom cabals. Scientific Reports, 2018, 8, 330.	3.3	13
249	Inhibition of human N―and Tâ€ŧype calcium channels by an <i>ortho</i> â€phenoxyanilide derivative, MONIROâ€1. British Journal of Pharmacology, 2018, 175, 2284-2295.	5.4	13
250	Toxicological characterization of <i>Fukuyoa paulensis</i> (Dinophyceae) from temperate Australia. Phycological Research, 2019, 67, 65-71.	1.6	13
251	Subcutaneous ω-Conotoxins Alleviate Mechanical Pain in Rodent Models of Acute Peripheral Neuropathy. Marine Drugs, 2021, 19, 106.	4.6	13
252	N―and câ€ŧerminal extensions of μ onotoxins increase potency and selectivity for neuronal sodium channels. Biopolymers, 2012, 98, 161-165.	2.4	12

#	Article	IF	CITATIONS
253	Novel conorfamides from Conus austini venom modulate both nicotinic acetylcholine receptors and acid-sensing ion channels. Biochemical Pharmacology, 2019, 164, 342-348.	4.4	12
254	Discovery, Pharmacological Characterisation and NMR Structure of the Novel µ-Conotoxin SxIIIC, a Potent and Irreversible NaV Channel Inhibitor. Biomedicines, 2020, 8, 391.	3.2	12
255	Toxic material from the crab Atergatis floridus. Toxicon, 1983, 21, 111-113.	1.6	11
256	Conotoxin TVIIA, a novel peptide from the venom of Conus tulipa. FEBS Journal, 2000, 267, 4642-4648.	0.2	11
257	Inhibition of N-Type Calcium Channels by Fluorophenoxyanilide Derivatives. Marine Drugs, 2015, 13, 2030-2045.	4.6	11
258	Synthesis and evaluation of aminobenzothiazoles as blockers of N- and T-type calcium channels. Bioorganic and Medicinal Chemistry, 2018, 26, 3046-3059.	3.0	11
259	Transfection methods for high-throughput cellular assays of voltage-gated calcium and sodium channels involved in pain. PLoS ONE, 2021, 16, e0243645.	2.5	11
260	Inhibition of somatosensory mechanotransduction by annexin A6. Science Signaling, 2018, 11, .	3.6	10
261	Synthesis, Pharmacological and Structural Characterization of Novel Conopressins from Conus miliaris. Marine Drugs, 2020, 18, 150.	4.6	10
262	Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs). PLoS ONE, 2016, 11, e0157363.	2.5	10
263	Novel ω-Conotoxins from <i>C. Catus</i> Reverse Signs of Mouse Inflammatory Pain after Systemic Administration. Molecular Pain, 2013, 9, 1744-8069-9-51.	2.1	9
264	Vicinal Disulfide Constrained Cyclic Peptidomimetics: a Turn Mimetic Scaffold Targeting the Norepinephrine Transporter. Angewandte Chemie, 2013, 125, 12242-12245.	2.0	9
265	Extracellular Surface Residues of the <i>α</i> _{1B} -Adrenoceptor Critical for G Protein–Coupled Receptor Function. Molecular Pharmacology, 2015, 87, 121-129.	2.3	9
266	Synthesis of Multivalent [Lys8]-Oxytocin Dendrimers that Inhibit Visceral Nociceptive Responses. Australian Journal of Chemistry, 2017, 70, 162.	0.9	9
267	The Toxicological Intersection between Allergen and Toxin: A Structural Comparison of the Cat Dander Allergenic Protein Fel d1 and the Slow Loris Brachial Gland Secretion Protein. Toxins, 2020, 12, 86.	3.4	9
268	Synthesis and InÂvitro Biological Activity of Cyclic Lipophilic χ-Conotoxin MrIA Analogues. International Journal of Peptide Research and Therapeutics, 2007, 13, 307-312.	1.9	8
269	Inhibition of the norepinephrine transporter by χâ€conotoxin dendrimers. Journal of Peptide Science, 2016, 22, 280-289.	1.4	8
270	Brain mechanisms of abnormal temperature perception in cold allodynia induced by ciguatoxin. Annals of Neurology, 2017, 81, 104-116.	5.3	8

#	Article	IF	CITATIONS
271	Toxins in pain. Current Opinion in Supportive and Palliative Care, 2018, 12, 132-141.	1.3	8
272	PAR2, Keratinocytes, and Cathepsin S Mediate the Sensory Effects of Ciguatoxins Responsible for Ciguatera Poisoning. Journal of Investigative Dermatology, 2021, 141, 648-658.e3.	0.7	8
273	T-type Calcium Channels in Health and Disease. Current Medicinal Chemistry, 2020, 27, 3098-3122.	2.4	8
274	Structure-activity studies on the inhibition of photosystem II electron transport by phenylbiurets. Journal of Agricultural and Food Chemistry, 1989, 37, 1509-1513.	5.2	7
275	Differential involvement of N-type calcium channels in transmitter release from vasoconstrictor and vasodilator neurons. British Journal of Pharmacology, 2004, 141, 961-970.	5.4	7
276	Editorial: Toxins in seafood. Toxicon, 2010, 56, 107.	1.6	7
277	Venom Peptide Modulators of the Immune System. Inflammation and Allergy: Drug Targets, 2011, 10, 399-410.	1.8	7
278	Effects of Lys2 to Ala2 substitutions on the structure and potency of ω onotoxins MVIIA and CVID. Biopolymers, 2012, 98, 345-356.	2.4	7
279	CHAPTER 3. Venoms-Based Drug Discovery: Proteomic and Transcriptomic Approaches. RSC Drug Discovery Series, 2015, , 80-96.	0.3	7
280	Neuropharmacology of venom peptides. Neuropharmacology, 2017, 127, 1-3.	4.1	7
281	Design, synthesis and biological profile of mixed opioid agonist/N-VGCC blocker peptides. New Journal of Chemistry, 2018, 42, 5656-5659.	2.8	7
282	Mutational analysis of ProTx-I and the novel venom peptide Pe1b provide insight into residues responsible for selective inhibition of the analgesic drug target NaV1.7. Biochemical Pharmacology, 2020, 181, 114080.	4.4	7
283	Structure-Function of the High Affinity Substrate Binding Site (S1) of Human Norepinephrine Transporter. Frontiers in Pharmacology, 2020, 11, 217.	3.5	7
284	Venom duct origins of prey capture and defensive conotoxins in piscivorous Conus striatus. Scientific Reports, 2021, 11, 13282.	3.3	7
285	Synthesis and Cav2.2 Binding Data for Non-Peptide Mimetics of ω-Conotoxin GVIA based on a 5-Amino-Anthranilamide Core. Australian Journal of Chemistry, 2008, 61, 11.	0.9	6
286	Rapid Access to ω-Conotoxin Chimeras using Native Chemical Ligation. Australian Journal of Chemistry, 2009, 62, 1333.	0.9	6
287	Synthesis of Pseudellone Analogs and Characterization as Novel T-type Calcium Channel Blockers. Marine Drugs, 2018, 16, 475.	4.6	6
288	â€~Messy' Processing of χ-conotoxin MrIA Generates Homologues with Reduced hNET Potency. Marine Drugs, 2019, 17, 165.	4.6	6

#	Article	IF	CITATIONS
289	CHAPTER 9. Case Study 1: Development of the Analgesic Drugs Prialt® and Xen2174 from Cone Snail Venoms. RSC Drug Discovery Series, 2015, , 245-254.	0.3	5
290	Engineering of a Spider Peptide via Conserved Structure-Function Traits Optimizes Sodium Channel Inhibition In Vitro and Anti-Nociception In Vivo. Frontiers in Molecular Biosciences, 2021, 8, 742457.	3.5	5
291	Venomic Interrogation Reveals the Complexity of Conus striolatus Venom. Australian Journal of Chemistry, 2020, 73, 357.	0.9	5
292	Unique Pharmacological Properties of α-Conotoxin OmIA at α7 nAChRs. Frontiers in Pharmacology, 2021, 12, 803397.	3.5	5
293	The antispasmogenic action on guinea-pig ileum of a fraction obtained from the toxic skin secretion of the stonefish, Synanceia trachynis. Toxicon, 1982, 20, 991-1000.	1.6	4
294	The effects of alanine-substituted conantokin-G and ifenprodil on the human spermine-activated N-methyl-d-aspartate receptor. Neuroscience, 2005, 130, 457-464.	2.3	4
295	Ciguatoxin and Ciguatera. , 2016, , 71-92.		4
296	The α1-adrenoceptor inhibitor ϕTIA facilitates net hunting in piscivorous Conus tulipa. Scientific Reports, 2019, 9, 17841.	3.3	4
297	Structure and allosteric activity of a single-disulfide conopeptide from Conus zonatus at human $\hat{1}\pm3\hat{1}^24$ and $\hat{1}\pm7$ nicotinic acetylcholine receptors. Journal of Biological Chemistry, 2020, 295, 7096-7112.	3.4	4
298	Phyla Molluska: The Venom Apparatus of Cone Snails. , 2016, , 327-340.		4
299	Functional modulation of the human voltage-gated sodium channel Na _V 1.8 by auxiliary β subunits. Channels, 2021, 15, 79-93.	2.8	4
300	Reâ€engineering the μâ€conotoxin SIIIA scaffold. Biopolymers, 2014, 101, 347-354.	2.4	3
301	Conotoxin Φâ€MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Antiâ€Apoptotic Activity. Angewandte Chemie, 2017, 129, 15169-15172.	2.0	3
302	The neuronal calcium ion channel activity of constrained analogues of MONIRO-1. Bioorganic and Medicinal Chemistry, 2020, 28, 115655.	3.0	3
303	Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus. Marine Drugs, 2021, 19, 60.	4.6	3
304	Rigidity of loop 1 contributes to equipotency of globular and ribbon isomers of α-conotoxin AusIA. Scientific Reports, 2021, 11, 21928.	3.3	3
305	Inhibition of N-type calcium ion channels by tricyclic antidepressants – experimental and theoretical justification for their use for neuropathic pain. RSC Medicinal Chemistry, 2022, 13, 183-195.	3.9	3
306	Pacific ciguatoxin-1 associated with a large common-source outbreak of ciguatera in east Arnhem Land, Australia. Natural Toxins, 1997, 5, 136-40.	1.0	3

#	Article	IF	CITATIONS
307	Erratum to â€~â€~Rapid extraction combined with LC-tandem mass spectrometry (CREM-LC/MS/MS) for the determination of ciguatoxins in ciguateric fish flesh'' [Toxicon 54 (2009) 62–66]. Toxicon, 2009, 54, 897.	1.6	2
308	Does Nature do Ion Channel Drug Discovery Better than Us?. RSC Drug Discovery Series, 2014, , 297-319.	0.3	2
309	Characterisation of δ-Conotoxin TxVIA as a Mammalian T-Type Calcium Channel Modulator. Marine Drugs, 2020, 18, 343.	4.6	2
310	Posttranslational modifications of α-conotoxins: sulfotyrosine and C-terminal amidation stabilise structures and increase acetylcholine receptor binding. RSC Medicinal Chemistry, 2021, 12, 1574-1584.	3.9	2
311	Pacific-Ciguatoxin-2 and Brevetoxin-1 Induce the Sensitization of Sensory Receptors Mediating Pain and Pruritus in Sensory Neurons. Marine Drugs, 2021, 19, 387.	4.6	2
312	Block of Voltage-Gated Calcium Channels by Peptide Toxins. , 2005, , 294-308.		2
313	Revising the Role of Defense and Predation in Cone Snail Venom Evolution. Toxinology, 2017, , 105-123.	0.2	2
314	On-Resin Strategy to Label α-Conotoxins: Cy5-RgIA, a Potent α9α10 Nicotinic Acetylcholine Receptor Imaging Probe. Australian Journal of Chemistry, 2020, 73, 327.	0.9	2
315	Venomics Reveals a Non-Compartmentalised Venom Gland in the Early Diverged Vermivorous Conus distans. Toxins, 2022, 14, 226.	3.4	2
316	Voltage-Gated Sodium Channel Modulation by a New Spider Toxin Ssp1a Isolated From an Australian Theraphosid. Frontiers in Pharmacology, 2021, 12, 795455.	3.5	2
317	The effects of two stonefish skin toxins on guinea-pig atria. Toxicon, 1983, 21, 53-56.	1.6	1
318	Ciguatera Toxins. Food Additives, 2000, , .	0.1	1
319	The synthesis and structure of an n-terminal dodecanoic acid conjugate of α-conotoxin MII. International Journal of Peptide Research and Therapeutics, 2001, 8, 235-239.	0.1	1
320	Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains. Molecular and Cellular Proteomics, 2013, 12, 1488.	3.8	1
321	Ciguatera poisoning: the role of high-voltage-activated and store-operated calcium channels in ciguatoxin-induced sensory effects. Itch (Philadelphia, Pa), 2020, 5, e43-e43.	0.2	1
322	Patients with ciguatera: request for convalescent sera. Medical Journal of Australia, 1992, 157, 140-141.	1.7	1
323	Phyla Molluska: The Venom Apparatus of Cone Snails. , 2015, , 1-10.		1
324	Cysteine-Rich α-Conotoxin SII Displays Novel Interactions at the Muscle Nicotinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2022, 13, 1245-1250.	3.5	1

#	Article	IF	CITATIONS
325	Comparative Venomics of C. flavidus and C. frigidus and Closely Related Vermivorous Cone Snails. Marine Drugs, 2022, 20, 209.	4.6	1
326	Corrigendum to: α-Conotoxins Epl and AuIB switch subtype selectivity and activity in native versus recombinant nicotinic acetylcholine receptors (FEBS 27779). FEBS Letters, 2004, 557, 294-294.	2.8	0
327	Environmental Poisoning: Presentation and Management. Therapeutic Drug Monitoring, 1998, 20, 502-509.	2.0	0
328	Ciguatoxin and Ciguatera. , 2015, , 1-19.		0
329	Revising the Role of Defense and Predation in Cone Snail Venom Evolution. , 2016, , 1-18.		0