
Tae-Yeoul Yun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8842259/publications.pdf Version: 2024-02-01

Τλε-Υεωμι Υιιν

#	Article	IF	CITATIONS
1	High-Gain, Low-Power, and Low-Noise CMOS Mixer Using Current-Reused Bleeding Amplification. IEEE Microwave and Wireless Components Letters, 2022, 32, 418-421.	3.2	3
2	Dual-Resistive Feedback Wideband LNA for Noise Cancellation and Robust Linearization. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 2224-2235.	4.6	8
3	A Triple-Band Dual-Open-Ring High-Gain High-Efficiency Antenna for Wearable Applications. IEEE Access, 2021, 9, 118435-118442.	4.2	21
4	Wearable Dual-Band High-Gain Low-SAR Antenna for Off-Body Communication. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 1175-1179.	4.0	44
5	Gm- and Swing-Enhanced Colpitts VCO by Optimization of Capacitance Ratio. IEEE Microwave and Wireless Components Letters, 2020, 30, 977-980.	3.2	4
6	Miniaturization of a Dual-Band Wearable Antenna for WBAN Applications. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 1452-1456.	4.0	69
7	A Quad-Band Dual-Sense Circularly-Polarized Square-Ring Antenna for Multi-Functional Wireless Applications. IEEE Access, 2019, 7, 149634-149640.	4.2	13
8	Simple Reconfigurable Circularly Polarized Antenna at Three Bands. Sensors, 2019, 19, 2316.	3.8	11
9	Analysis and optimization of a resistiveâ€feedback inverter LNA. Microwave and Optical Technology Letters, 2018, 60, 1143-1151.	1.4	10
10	A dynamic current-bleeding technique for a low-noise and high-gain CMOS mixer. Microwave and Optical Technology Letters, 2017, 59, 1267-1271.	1.4	2
11	Small VCO-Gain Variation Adding a Bias-Shifted Inversion-Mode MOS Varactor. IEEE Microwave and Wireless Components Letters, 2017, 27, 395-397.	3.2	16
12	Low-Flicker-Noise and High-Gain Mixer Using a Dynamic Current-Bleeding Technique. IEEE Microwave and Wireless Components Letters, 2017, 27, 733-735.	3.2	13
13	Flicker Noise Improved CMOS Mixer Using Feedback Current Bleeding. IEEE Microwave and Wireless Components Letters, 2017, 27, 730-732.	3.2	7
14	Highâ€gain mixer using cascode current bleeding and <i>g_m</i> â€boosting techniques. Microwave and Optical Technology Letters, 2017, 59, 1-6.	1.4	5
15	High-Linearity Drive Amplifier Using Active Local Feedback. IEEE Microwave and Wireless Components Letters, 2016, 26, 613-615.	3.2	2
16	Swing and Phase-Noise Enhanced VCO With Capacitive-Division Dynamic-Threshold MOS. IEEE Microwave and Wireless Components Letters, 2016, 26, 219-221.	3.2	10
17	Small Wideband Monopole Antenna With a Distributed Inductive Strip for LTE/GSM/UMTS. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1677-1680.	4.0	12
18	Active and Passive Combined Mixer for Low Flicker Noise and Low dc Offset. IEEE Microwave and Wireless Components Letters, 2015, 25, 463-465.	3.2	14

TAE-YEOUL YUN

#	Article	IF	CITATIONS
19	Compact Wideband Open-End Slot Antenna With Inherent Matching. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1385-1388.	4.0	16
20	Compact dualâ€band slot antenna with capacitor loading. Microwave and Optical Technology Letters, 2014, 56, 1653-1658.	1.4	2
21	CMOS QVCO With Current-Reuse, Bottom-Series Coupling, and Forward Body Biasing Techniques. IEEE Microwave and Wireless Components Letters, 2014, 24, 608-610.	3.2	9
22	Analysis and Design of Feedforward Linearity-Improved Mixer Using Inductive Source Degeneration. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 323-331.	4.6	19
23	Highâ€gain Iowâ€noise Kuâ€band mixer with inverting transconductance technique. IET Microwaves, Antennas and Propagation, 2013, 7, 141-145.	1.4	2
24	Frequency reconfigurable planar invertedâ€F antenna using switchable radiator and capacitive load. IET Microwaves, Antennas and Propagation, 2013, 7, 430-435.	1.4	15
25	Low voltage-low power full-band UWB receiver front-end. Microwave and Optical Technology Letters, 2013, 55, 278-281.	1.4	0
26	Equivalent-Circuit Model for High-Capacitance MLCC Based on Transmission-Line Theory. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2, 1012-1020.	2.5	15
27	Anaysis and design of linearity improved mixer using third-order transconductance cancellation. , 2012, , .		3
28	Dual-band low-phase-noise LC-QVCO using series coupling and switched biasing techniques. Analog Integrated Circuits and Signal Processing, 2012, 73, 955-960.	1.4	1
29	<i>K</i> â€band CMOS VCO using a wide tuning range varactor. Microwave and Optical Technology Letters, 2012, 54, 2751-2754.	1.4	1
30	3.4-mW common-gate and current-reused UWB LNA. , 2012, , .		2
31	Simultaneous Frequency and Isolation Reconfigurable MIMO PIFA Using PIN Diodes. IEEE Transactions on Antennas and Propagation, 2012, 60, 5939-5946.	5.1	72
32	Small antennas combining multiple bands with MIMO techniques. , 2012, , .		0
33	Patterned Helical DVB-T Antenna With an Open Stub and a Matching Network. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 736-739.	4.0	0
34	Small-Size and High-Isolation MIMO Antenna for WLAN. ETRI Journal, 2012, 34, 114-117.	2.0	17
35	Planar DVB-T Antenna Using a Patterned Helical Line and Matching Circuit. ETRI Journal, 2012, 34, 454-457.	2.0	2
36	Wide tuning range cmos millimeterâ€wave vco using resistorsâ€added mosfet varactor. Microwave and Optical Technology Letters, 2012, 54, 1777-1783.	1.4	1

TAE-YEOUL YUN

#	Article	IF	CITATIONS
37	A frequency reconfigurable PIFA using a PIN diode for mobile-WiMAX applications. , 2011, , .		Ο
38	Equivalent-Circuit Modeling for Multilayer Capacitors Based on Coupled Transmission-Line Theory. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1, 731-741.	2.5	7
39	Highâ€gain reconfigurable LNA using optimized <i>Q</i> â€factor inductor and switched capacitor. Microwave and Optical Technology Letters, 2011, 53, 1069-1074.	1.4	1
40	A 5.8 GHz Low-Phase-Noise LC-QVCO Using Splitting Switched Biasing Technique. IEEE Microwave and Wireless Components Letters, 2010, 20, 337-339.	3.2	19
41	A Reconfigurable PIFA Using a Switchable PIN-Diode and a Fine-Tuning Varactor for USPCS/WCDMA/m-WiMAX/WLAN. IEEE Transactions on Antennas and Propagation, 2010, 58, 2404-2411.	5.1	113
42	A Low-Noise WLAN Mixer Using Switched Biasing Technique. IEEE Microwave and Wireless Components Letters, 2009, 19, 650-652.	3.2	23
43	A Multi-Band Planar Monopole Antenna with Slits and a Stub. IEICE Transactions on Communications, 2009, E92-B, 2349-2351.	0.7	1
44	A Low-Power and High-Gain Mixer for UWB Systems. IEEE Microwave and Wireless Components Letters, 2008, 18, 803-805.	3.2	36
45	A Sideband-suppressed MB-OFDM Frequency Synthesizer Using a Dual-Mode Divider. , 2007, , .		0
46	A Low-Noise UWB CMOS Mixer Using Switched Biasing Technique. , 2007, , .		8
47	Reconfigurable antenna for wideband code division multiple access and Korean satellite digital multimedia broadcasting controlled by pin-diodes. Microwave and Optical Technology Letters, 2007, 49, 1334-1337.	1.4	3
48	A low-noise UWB cmos mixer using current bleeding and resonant inductor techniques. Microwave and Optical Technology Letters, 2007, 49, 1595-1597.	1.4	8
49	Two-dimensional beam-scanning using tapered slot antennas and piezoelectric transducers. International Journal of RF and Microwave Computer-Aided Engineering, 2006, 16, 331-337.	1.2	1
50	A microwave modeling of multilayered chip inductors. , 2006, , .		0
51	Reconfigurable antenna for Korean WIBRO and DMB systems. , 2006, , .		1
52	Collision-avoidance radar-system antenna for a smart UAV. Microwave and Optical Technology Letters, 2005, 44, 498-501.	1.4	2