Peter J C Hausoul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8842198/publications.pdf

Version: 2024-02-01

27	694	471509	26 g-index
papers	citations	h-index	g-index
30	30	30	812
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	On the effect of Alkaline Earth Metal Cations in the Hydrogenolysis of Glycerol over Pt/C \hat{a} e" an Experimental and Theoretical Study. ChemCatChem, 2022, 14, .	3.7	3
2	Synthesis of (â°)â€menthol: Industrial synthesis routes and recent development. Flavour and Fragrance Journal, 2022, 37, 195-209.	2.6	22
3	Hydrogen-efficient non-oxidative transformation of methanol into dimethoxymethane over a tailored bifunctional Cu catalyst. Sustainable Energy and Fuels, 2021, 5, 117-126.	4.9	11
4	Mg(OH) ₂ â€Facilitated Liquidâ€Phase Conversion of Lactic Acid into 1,2â€Propanediol over Cu: An Experimental and Theoretical Study. ChemSusChem, 2020, 13, 126-130.	6.8	12
5	Grignard synthesis of fluorinated nanoporous element organic frameworks based on the heteroatoms P, B, Si, Sn and Ge. Polymer Chemistry, 2019, 10, 5032-5036.	3.9	2
6	Anionic surfactants based on intermediates of carbohydrate conversion. Green Chemistry, 2019, 21, 3882-3890.	9.0	19
7	Direct Synthesis of Methyl Formate from CO 2 With Phosphineâ€Based Polymerâ€Bound Ru Catalysts. ChemSusChem, 2019, 12, 3278-3285.	6.8	12
8	Cu/Câ€catalyzed Hydrogenolysis of Sorbitol to Glycols–On the Influence of Particle Size and Base. ChemCatChem, 2019, 11, 4123-4129.	3.7	18
9	Selective production of glycols from xylitol over Ru on covalent triazine frameworks – suppressing decarbonylation reactions. Green Chemistry, 2018, 20, 1316-1322.	9.0	29
10	Hydrogenation of CO ₂ to Formate over Ruthenium Immobilized on Solid Molecular Phosphines. ChemSusChem, 2018, 11, 1857-1865.	6.8	39
11	Solid Molecular Frustrated Lewis Pairs in a Polyamine Organic Framework for the Catalytic Metalâ€free Hydrogenation of Alkenes. ChemCatChem, 2018, 10, 1835-1843.	3.7	29
12	Kinetics study of the Ru/C-catalysed hydrogenolysis of polyols – insight into the interactions with the metal surface. Catalysis Science and Technology, 2017, 7, 56-63.	4.1	35
13	A Bipyridine-Based Conjugated Microporous Polymer for the Ir-Catalyzed Dehydrogenation of Formic Acid. ACS Catalysis, 2017, 7, 8413-8419.	11.2	37
14	Solid Molecular Phosphine Catalysts for Formic Acid Decomposition in the Biorefinery. Angewandte Chemie - International Edition, 2016, 55, 5597-5601.	13.8	44
15	Molekulare Phosphanâ€Feststoffkatalysatoren zur Ameisensärezersetzung in der Bioraffinerie. Angewandte Chemie, 2016, 128, 5687-5691.	2.0	12
16	Unravelling the Ruâ€Catalyzed Hydrogenolysis of Biomassâ€Based Polyols under Neutral and Acidic Conditions. ChemSusChem, 2015, 8, 3323-3330.	6.8	47
17	Catalytic upgrading of α-angelica lactone to levulinic acid esters under mild conditions over heterogeneous catalysts. Catalysis Science and Technology, 2015, 5, 5168-5173.	4.1	53
18	Efficient, solvent-free hydrogenation of \hat{l}_{\pm} -angelica lactone catalysed by Ru/C at atmospheric pressure and room temperature. Chemical Communications, 2014, 50, 10206.	4.1	35

#	ARTICLE	IF	CITATION
19	Development of a 4,4′-biphenyl/phosphine-based COF for the heterogeneous Pd-catalysed telomerisation of 1,3-butadiene. Catalysis Science and Technology, 2013, 3, 2571.	4.1	37
20	Pd/TOMPP-catalysed telomerisation of 1,3-butadiene with lignin-type phenols and thermal Claisen rearrangement of linear telomers. Catalysis Science and Technology, 2013, 3, 1215-1223.	4.1	19
21	Pd/TOMPP-catalyzed telomerization of 1,3-butadiene: From biomass-based substrates to new mechanistic insights. Pure and Applied Chemistry, 2012, 84, 1713-1727.	1.9	11
22	Mechanistic Study of the Pd/TOMPPâ€Catalyzed Telomerization of 1,3â€Butadiene with Biomassâ€Based Alcohols: On the Reversibility of Phosphine Alkylation. ChemCatChem, 2011, 3, 845-852.	3.7	17
23	Facile Access to Key Reactive Intermediates in the Pd/PR ₃ â€Catalyzed Telomerization of 1,3â€Butadiene. Angewandte Chemie - International Edition, 2010, 49, 7972-7975.	13.8	29
24	Baseâ€free Pd/TOMPPâ€Catalyzed Telomerization of 1,3â€Butadiene with Carbohydrates and Sugar Alcohols. ChemSusChem, 2009, 2, 855-858.	6.8	36
25	Synthesis of Polyaryl Rigid-Core Carbosilane Dendrimers for Supported Organic Synthesis. Organometallics, 2009, 28, 4406-4415.	2.3	28
26	Telomerization of 1,3-butadiene with various alcohols by Pd/TOMPP catalysts: new opportunities for catalytic biomass valorization. Green Chemistry, 2009, 11 , 1155 .	9.0	44
27	Ru on Nâ€doped Carbon for the Selective Hydrogenolysis of Sugars and Sugar Alcohols. ChemCatChem, 0, , .	3.7	4