Giuseppe Olivieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8841456/publications.pdf

Version: 2024-02-01

126907 161849 3,285 87 33 54 citations g-index h-index papers 93 93 93 3996 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Towards industrial products from microalgae. Energy and Environmental Science, 2016, 9, 3036-3043.	30.8	468
2	Current Bottlenecks and Challenges of the Microalgal Biorefinery. Trends in Biotechnology, 2019, 37, 242-252.	9.3	174
3	Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresource Technology, 2015, 184, 297-304.	9.6	148
4	Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. Journal of Chemical Technology and Biotechnology, 2014, 89, 178-195.	3.2	124
5	Segregation of fluidized binary mixtures of granular solids. AICHE Journal, 2004, 50, 3095-3106.	3.6	106
6	Deep Eutectic Solvents pretreatment of agro-industrial food waste. Biotechnology for Biofuels, 2018, 11, 37.	6.2	94
7	Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production. Bioresource Technology, 2017, 243, 464-473.	9.6	78
8	Post-combustion carbon capture mediated by carbonic anhydrase. Separation and Purification Technology, 2013, 107, 331-339.	7.9	75
9	Bubble coalescence: Effect of bubble approach velocity and liquid viscosity. Chemical Engineering Science, 2015, 134, 205-216.	3.8	70
10	Genetic engineering of Synechocystis sp. PCC6803 for poly-β-hydroxybutyrate overproduction. Algal Research, 2017, 25, 117-127.	4.6	68
11	Butanol production by bioconversion of cheese whey in a continuous packed bed reactor. Bioresource Technology, 2013, 138, 259-265.	9.6	67
12	Pre-treatment and enzymatic hydrolysis of lettuce residues as feedstock for bio-butanol production. Biomass and Bioenergy, 2017, 96, 172-179.	5.7	67
13	Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 603-608.	3.0	64
14	Mild and Selective Protein Release of Cell Wall Deficient Microalgae with Pulsed Electric Field. ACS Sustainable Chemistry and Engineering, 2017, 5, 6046-6053.	6.7	59
15	Continuous succinic acid fermentation by Actinobacillus succinogenes in a packed-bed biofilm reactor. Biotechnology for Biofuels, 2018, 11, 138.	6.2	59
16	Cationic polymers for successful flocculation of marine microalgae. Bioresource Technology, 2014, 169, 804-807.	9.6	52
17	Bioreactors for succinic acid production processes. Critical Reviews in Biotechnology, 2019, 39, 571-586.	9.0	52
18	Identification of an industrial microalgal strain for starch production in biorefinery context: The effect of nitrogen and carbon concentration on starch accumulation. New Biotechnology, 2018, 41, 46-54.	4.4	51

#	Article	IF	CITATIONS
19	Cost-effective production of recombinant peptides in Escherichia coli. New Biotechnology, 2019, 51, 39-48.	4.4	49
20	Olive mill wastewater remediation by means of Pleurotus ostreatus. Biochemical Engineering Journal, 2006, 31, 180-187.	3.6	48
21	Industrial Production of Poly-β-hydroxybutyrate from CO2: Can Cyanobacteria Meet this Challenge?. Processes, 2020, 8, 323.	2.8	48
22	Renewable feedstocks for biobutanol production by fermentation. New Biotechnology, 2017, 39, 135-140.	4.4	44
23	Butanol production from hexoses and pentoses by fermentation of Clostridium acetobutylicum. Anaerobe, 2015, 34, 146-155.	2.1	43
24	CFD simulation of bubbling fluidized bidisperse mixtures: Effect of integration methods and restitution coefficient. Chemical Engineering Science, 2013, 102, 324-334.	3.8	41
25	Bio-butanol separation by adsorption on various materials: Assessment of isotherms and effects of other ABE-fermentation compounds. Separation and Purification Technology, 2018, 191, 328-339.	7.9	39
26	Biosuccinic Acid from Lignocellulosic-Based Hexoses and Pentoses by Actinobacillus succinogenes: Characterization of the Conversion Process. Applied Biochemistry and Biotechnology, 2017, 183, 1465-1477.	2.9	37
27	From Current Algae Products to Future Biorefinery Practices: A Review. Advances in Biochemical Engineering/Biotechnology, 2017, 166, 99-123.	1.1	37
28	Poly- \hat{l}^2 -hydroxybutyrate (PHB) production by Synechocystis PCC6803 from CO2: Model development. Algal Research, 2018, 29, 49-60.	4.6	37
29	Design of Value Chains for Microalgal Biorefinery at Industrial Scale: Process Integration and Techno-Economic Analysis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 550758.	4.1	37
30	Effects of viscosity and relaxation time on the hydrodynamics of gas–liquid systems. Chemical Engineering Science, 2011, 66, 3392-3399.	3.8	35
31	Kinetic study of a novel thermo-stable \hat{l}_{\pm} -carbonic anhydrase for biomimetic CO2 capture. Enzyme and Microbial Technology, 2013, 53, 271-277.	3.2	35
32	Biodiesel production from <i>Stichococcus</i> strains at laboratory scale. Journal of Chemical Technology and Biotechnology, 2011, 86, 776-783.	3.2	34
33	A step forward in laccase exploitation: Recombinant production and evaluation of techno-economic feasibility of the process. Journal of Biotechnology, 2017, 259, 175-181.	3.8	34
34	Continuous lactose fermentation by Clostridium acetobutylicum – Assessment of acidogenesis kinetics. Bioresource Technology, 2011, 102, 1608-1614.	9.6	32
35	Kinetic study of butanol production from various sugars by Clostridium acetobutylicum using a dynamic model. Biochemical Engineering Journal, 2015, 99, 156-166.	3.6	32
36	Effects of photobioreactors design and operating conditions on Stichococcus bacillaris biomass and biodiesel production. Biochemical Engineering Journal, 2013, 74, 8-14.	3.6	31

#	Article	IF	CITATIONS
37	Hydrodynamics and mass transfer in a lab-scale three-phase internal loop airlift. Chemical Engineering Journal, 2003, 96, 45-54.	12.7	30
38	Exploitation of Trametes versicolor for bioremediation of endocrine disrupting chemicals in bioreactors. PLoS ONE, 2017, 12, e0178758.	2.5	29
39	Butanol Production from Leftover Beverages and Sport Drinks. Bioenergy Research, 2015, 8, 369-379.	3.9	28
40	Continuous Succinic Acid Fermentation by Actinobacillus Succinogenes: Assessment of Growth and Succinic Acid Production Kinetics. Applied Biochemistry and Biotechnology, 2019, 187, 782-799.	2.9	28
41	Photobioreactors for microalgal cultures: A Lagrangian model coupling hydrodynamics and kinetics. Biotechnology Progress, 2015, 31, 1259-1272.	2.6	27
42	Modeling of an aerobic biofilm reactor with doubleâ€limiting substrate kinetics: Bifurcational and dynamical analysis. Biotechnology Progress, 2011, 27, 1599-1613.	2.6	26
43	Bio-butanol recovery by adsorption/desorption processes. Separation and Purification Technology, 2020, 235, 116145.	7.9	26
44	Bioreactor and Bioprocess Design Issues in Enzymatic Hydrolysis of Lignocellulosic Biomass. Catalysts, 2021, 11, 680.	3.5	26
45	Bioremediation: An Overview on Current Practices, Advances, and New Perspectives in Environmental Pollution Treatment. BioMed Research International, 2017, 2017, 1-2.	1.9	25
46	Strategies for dephenolization of raw olive mill wastewater by means of <i>Pleurotus ostreatus</i> Journal of Industrial Microbiology and Biotechnology, 2012, 39, 719-729.	3.0	24
47	New ultra-flat photobioreactor for intensive microalgal production: The effect of light irradiance. Algal Research, 2018, 34, 134-142.	4.6	24
48	Simultaneous production of antioxidants and starch from the microalga Chlorella sorokiniana. Algal Research, 2018, 34, 164-174.	4.6	23
49	Agro Food Wastes and Innovative Pretreatments to Meet Biofuel Demand in Europe. Chemical Engineering and Technology, 2019, 42, 954-961.	1.5	21
50	A thermophilic C-phycocyanin with unprecedented biophysical and biochemical properties. International Journal of Biological Macromolecules, 2020, 150, 38-51.	7.5	21
51	Fungal solid state fermentation on agro-industrial wastes for acid wastewater decolorization in a continuous flow packed-bed bioreactor. Bioresource Technology, 2011, 102, 7603-7607.	9.6	20
52	Towards green extraction methods from microalgae learning from the classics. Applied Microbiology and Biotechnology, 2020, 104, 9067-9077.	3.6	20
53	Green Compressed Fluid Technologies To Extract Antioxidants and Lipids from <i>Galdieria phlegrea</i> in a Biorefinery Approach. ACS Sustainable Chemistry and Engineering, 2020, 8, 2939-2947.	6.7	20
54	Autotrophic starch production by Chlamydomonas species. Journal of Applied Phycology, 2017, 29, 105-114.	2.8	18

#	Article	IF	CITATIONS
55	A cascade extraction of active phycocyanin and fatty acids from Galdieria phlegrea. Applied Microbiology and Biotechnology, 2019, 103, 9455-9464.	3.6	18
56	A fluid-bed continuous classifier of polydisperse granular solids. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40, 638-644.	5.3	17
57	Continuous xylose fermentation by Clostridium acetobutylicum – Kinetics and energetics issues under acidogenesis conditions. Bioresource Technology, 2014, 164, 155-161.	9.6	17
58	Modeling of slurry staged bubble column for biomimetic CO 2 capture. International Journal of Greenhouse Gas Control, 2016, 47, 200-209.	4.6	17
59	Continuous lactose fermentation by Clostridium acetobutylicum—Assessment of energetics and product yields of the acidogenesis. Enzyme and Microbial Technology, 2012, 50, 165-172.	3.2	16
60	Continuous lactose fermentation by Clostridium acetobutylicum – Assessment of solventogenic kinetics. Bioresource Technology, 2015, 180, 330-337.	9.6	16
61	Continuous xylose fermentation by Clostridium acetobutylicum – Assessment of solventogenic kinetics. Bioresource Technology, 2015, 192, 142-148.	9.6	16
62	Growth and biomass productivity of Scenedesmus vacuolatus on a twin layer system and a comparison with other types of cultivations. Applied Microbiology and Biotechnology, 2017, 101, 8321-8329.	3.6	16
63	Combined antioxidant-biofuel production from coffee silverskin. Applied Microbiology and Biotechnology, 2019, 103, 1021-1029.	3.6	16
64	Biomass and phycobiliprotein production of Galdieria sulphuraria, immobilized on a twin-layer porous substrate photobioreactor. Applied Microbiology and Biotechnology, 2020, 104, 3109-3119.	3.6	16
65	Efficient succinic acid production from highâ€sugarâ€content beverages by <i>Actinobacillus succinogenes</i> . Biotechnology Progress, 2019, 35, e2863.	2.6	14
66	Alkaline direct transesterification of different species of Stichococcus for bio-oil production. New Biotechnology, 2016, 33, 797-806.	4.4	10
67	OPTIMIZATION OF SOLVENT RECOVERY IN THE PRODUCTION OF BUTANOL BY FERMENTATION. Environmental Engineering and Management Journal, 2012, 11, 1499-1504.	0.6	9
68	A TECHNO-ECONOMIC ANALYSIS OF BIODIESEL PRODUCTION FROM MICROALGAE. Environmental Engineering and Management Journal, 2013, 12, 1563-1573.	0.6	9
69	Kinetic characterization of the photosynthetic reaction centres in microalgae by means of fluorescence methodology. Journal of Biotechnology, 2015, 212, 1-10.	3.8	8
70	Comparison of Galdieria growth and photosynthetic activity in different culture systems. AMB Express, 2020, 10, 170.	3.0	8
71	Scenedesmus vacuolatus cultures for possible combined laccase-like phenoloxidase activity and biodiesel production. Annals of Microbiology, 2018, 68, 9-15.	2.6	7
72	A novel threeâ€phase airlift reactor without circulation of solids. Canadian Journal of Chemical Engineering, 2010, 88, 574-578.	1.7	6

#	Article	IF	CITATIONS
73	Laccase-based synthesis of SIC-RED: A new dyeing product for protein gel staining. Biocatalysis and Agricultural Biotechnology, 2018, 15, 270-276.	3.1	6
74	Bioenergy II: An Assessment of the Kinetics of Butanol Production by Clostridium acetobutylicum. International Journal of Chemical Reactor Engineering, 2009, 7, .	1.1	5
75	Unstable steady state operations of substrate inhibited cultures by dissolved oxygen control. Journal of Biotechnology, 2011, 156, 302-308.	3.8	5
76	Nonlinear Analysis of Substrate-Inhibited Continuous Cultures Operated with Feedback Control on Dissolved Oxygen. Industrial & Engineering Chemistry Research, 2013, 52, 13422-13431.	3.7	5
77	Switchable Solvent Selective Extraction of Hydrophobic Antioxidants from <i>Synechococcus bigranulatus</i> . ACS Sustainable Chemistry and Engineering, 2021, 9, 13798-13806.	6.7	4
78	Neochloris oleoabundans from nature to industry: a comprehensive review. Reviews in Environmental Science and Biotechnology, 2021, 20, 943-958.	8.1	3
79	TECHNO-ECONOMIC ANALYSIS OF A BUTANOL RECOVERY PROCESS BASED ON GAS STRIPPING TECHNIQUE. Environmental Engineering and Management Journal, 2017, 16, 1005-1016.	0.6	3
80	PHOTOAUTOTROPHIC PRODUCTION OF POLYHYDROXYBUTYRATE (PHB) FROM CYANOBACTERIA: NITRATE EFFECTS AND SCREENING OF STRAINS. Environmental Engineering and Management Journal, 2019, 18, 1337-1346.	0.6	3
81	Immobilization of carbonic anhydrase for biomimetic CO2 capture in slurry absorber. New Biotechnology, 2014, 31, S20-S21.	4.4	2
82	Model-Based Prediction of Perceived Light Flashing in Recirculated Inclined Wavy-Bottomed Photobioreactors. Processes, 2021, 9, 1158.	2.8	1
83	Thermo resistant antioxidants from photoautotrophic microorganisms: screening and characterization. World Journal of Microbiology and Biotechnology, 2021, 37, 215.	3. 6	1
84	Polysaccharides production by autotrophic cultures of microalgae. New Biotechnology, 2014, 31, S17.	4.4	0
85	Factors influencing starch accumulation in microalga Chlorella sorokiniana. New Biotechnology, 2016, 33, S118.	4.4	0
86	Continuous butanol production by Clostridium acetobutylicum in a series of packed bed reactors. New Biotechnology, 2016, 33, S60.	4.4	0
87	Integrated Biorefineries for Algal Biomolecules. Grand Challenges in Biology and Biotechnology, 2019, , 293-317.	2.4	O