
Yedy Israel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8841398/publications.pdf Version: 2024-02-01

VEDV ISDAFI

#	Article	IF	CITATIONS
1	Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature, 1990, 347, 80-83.	13.7	470
2	Experimental alcohol-induced hepatic necrosis: suppression by propylthiouracil Proceedings of the National Academy of Sciences of the United States of America, 1975, 72, 1137-1141.	3.3	233
3	Long-Term Treatment of Alcoholic Liver Disease with Propylthiouracil. New England Journal of Medicine, 1987, 317, 1421-1427.	13.9	194
4	Antibodies against acetaldehyde-modified protein epitopes in human alcoholics. Hepatology, 1987, 7, 1210-1214.	3.6	189
5	Assessment of Prognostic Factors in Alcoholic Liver Disease: Toward a Global Quantitative Expression of Severity. Hepatology, 2007, 3, 896-905.	3.6	174
6	RELIABILITY OF ASSESSMENT OF ALCOHOL INTAKE BASED ON PERSONAL INTERVIEWS IN A LIVER CLINIC. Lancet, The, 1979, 314, 1354-1356.	6.3	164
7	The UChA and UChB rat lines: metabolic and genetic differences influencing ethanol intake. Addiction Biology, 2006, 11, 310-323.	1.4	130
8	Modulation of alcohol dehydrogenase and ethanol metabolism by sex hormones in the spontaneously hypertensive rat. Effect of chronic ethanol administration. Biochemical Journal, 1980, 186, 483-490.	3.2	127
9	The Role of Hepatocyte Enlargement in Hepatic Pressure in Cirrhotic and Noncirrhotic Alcoholic Liver Disease. Hepatology, 1982, 2, 539S-546S.	3.6	120
10	Screening for Problem Drinking and Counseling by the Primary Care Physician-Nurse Team. Alcoholism: Clinical and Experimental Research, 1996, 20, 1443-1450.	1.4	106
11	Ethanol as a Prodrug: Brain Metabolism of Ethanol Mediates its Reinforcing Effects. Alcoholism: Clinical and Experimental Research, 2011, 35, 606-612.	1.4	99
12	Polymorphisms of the D4 Dopamine Receptor Alleles in Chronic Alcoholism. Biochemical and Biophysical Research Communications, 1993, 196, 107-114.	1.0	90
13	Serum IgA, IgC, and IgM antibodies directed against acetaldehyde-derived epitopes: Relationship to liver disease severity and alcohol consumption. Hepatology, 1997, 25, 1418-1424.	3.6	87
14	Alcoholic liver disease: Information in search of knowledge?. Hepatology, 1981, 1, 267-283.	3.6	85
15	Tetranucleotide GGGA Motif in Primary RNA Transcripts. Journal of Biological Chemistry, 1998, 273, 25125-25131.	1.6	80
16	Alcohol consumption by orientals in North America is predicted largely by a single gene. Behavior Genetics, 1995, 25, 59-65.	1.4	78
17	Low-molecular-weight polyethylene glycol as a probe of gastrointestinal permeability after alcohol ingestion. Digestive Diseases and Sciences, 1981, 26, 971-977.	1.1	73
18	Sinusoidal caliber in alcoholic and nonalcoholic liver disease: Diagnostic and pathogenic implications. Hepatology, 1985, 5, 408-414.	3.6	66

#	Article	IF	CITATIONS
19	Acetate-Mediated Effects of Ethanol. Alcoholism: Clinical and Experimental Research, 1994, 18, 144-148.	1.4	63
20	Sensitivity and Specificity of Carbohydrate-Deficient Transferrin as a Marker of Alcohol Abuse Are Significantly Influenced by Alterations in Serum Transferrin: Comparison of Two Methods. Alcoholism: Clinical and Experimental Research, 1996, 20, 449-454.	1.4	61
21	Sex differences, alcohol dehydrogenase, acetaldehyde burst, and aversion to ethanol in the rat: a systems perspective. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E531-E537.	1.8	58
22	Immune Responses to Alcohol Metabolites: Pathogenic and Diagnostic Implications. Seminars in Liver Disease, 1988, 8, 81-90.	1.8	56
23	The sequenced rat brain transcriptome – its use in identifying networks predisposing alcohol consumption. FEBS Journal, 2015, 282, 3556-3578.	2.2	52
24	Effect of Ethanol on the Transport of Sodium in Frog Skin. Nature, 1963, 200, 476-478.	13.7	51
25	Relationship between γ-Glutamyl Transpeptidase and Mean Urinary Alcohol Levels in Alcoholics While Drinking and after Alcohol Withdrawal. Alcoholism: Clinical and Experimental Research, 1985, 9, 10-13.	1.4	50
26	Cloning and nucleotide sequence of human liver cDNA encoding for cystathionine γ-lyase. Biochemical and Biophysical Research Communications, 1992, 189, 749-758.	1.0	50
27	Role of hepatic γ-glutamyltransferase in the degradation of circulating glutathione: Studies in the intact guinea pig perfused liver. Hepatology, 1990, 11, 843-849.	3.6	49
28	Carbohydrate-Deficient Transferrin as a Marker of Alcohol Abuse: Relationship to Alcohol Consumption, Severity of Liver Disease, and Fibrogenesis. Alcoholism: Clinical and Experimental Research, 1995, 19, 1203-1208.	1.4	49
29	Autoimmune Responses Against Oxidant Stress and Acetaldehyde-Derived Epitopes in Human Alcohol Consumers. Alcoholism: Clinical and Experimental Research, 2000, 24, 1103-1109.	1.4	49
30	Ethanol-induced increase in portal hepatic blood flow: Interference by anesthetic agents. Hepatology, 1987, 7, 89-94.	3.6	47
31	Cloning of two additional catecholamine receptors from rat brain. FEBS Letters, 1990, 262, 8-12.	1.3	47
32	Hemoglobin-Acetaldehyde Adducts in Human Volunteers Following Acute Ethanol Ingestion. Alcoholism: Clinical and Experimental Research, 1990, 14, 838-841.	1.4	46
33	Ethanol induces stronger dopamine release in nucleus accumbens (shell) of alcohol-preferring (bibulous) than in alcohol-avoiding (abstainer) rats. European Journal of Pharmacology, 2008, 591, 153-158.	1.7	45
34	Intranasal delivery of mesenchymal stem cellâ€derived exosomes reduces oxidative stress and markedly inhibits ethanol consumption and postâ€deprivation relapse drinking Addiction Biology, 2019, 24, 994-1007.	1.4	41
35	Oxidative Stress and Neuroinflammation as a Pivot in Drug Abuse. A Focus on the Therapeutic Potential of Antioxidant and Anti-Inflammatory Agents and Biomolecules. Antioxidants, 2020, 9, 830.	2.2	40
36	Reward and Relapse: Complete Geneâ€Induced Dissociation in an Animal Model of Alcohol Dependence. Alcoholism: Clinical and Experimental Research, 2012, 36, 517-522.	1.4	37

#	Article	IF	CITATIONS
37	Intravenous administration of anti-inflammatory mesenchymal stem cell spheroids reduces chronic alcohol intake and abolishes binge-drinking. Scientific Reports, 2018, 8, 4325.	1.6	37
38	Changes from High Potassium (HK) to Low Potassium (LK) in Bovine Red Cells. Journal of General Physiology, 1972, 59, 270-284.	0.9	36
39	The swift increase in alcohol metabolism. Biochemical Pharmacology, 1982, 31, 2403-2407.	2.0	36
40	Gene Therapy Reduces Ethanol Intake in an Animal Model of Alcohol Dependence. Alcoholism: Clinical and Experimental Research, 2008, 32, 52-57.	1.4	36
41	Fenofibrate – A lipid-lowering drug – Reduces voluntary alcohol drinking in rats. Alcohol, 2014, 48, 665-670.	0.8	36
42	EFFECTS OF ETHANOL ON NOREPINEPHRINE UPTAKE AND ELECTRICALLY STIMULATED RELEASE IN BRAIN TISSUE. Annals of the New York Academy of Sciences, 1973, 215, 38-48.	1.8	35
43	Hypermetabolic State, Hepatocyte Expansion, and Liver Blood Flow: An Interaction Triad in Alcoholic Liver Injury. Annals of the New York Academy of Sciences, 1987, 492, 303-323.	1.8	35
44	Mechanism of protection against alcoholism by an alcohol dehydrogenase polymorphism: development of an animal model. FASEB Journal, 2010, 24, 266-274.	0.2	35
45	Salsolinol, free of isosalsolinol, exerts ethanol-like motivational/sensitization effects leading to increases in ethanol intake. Alcohol, 2014, 48, 551-559.	0.8	35
46	Beyond the "First Hit― Marked Inhibition by <i>N</i> -Acetyl Cysteine of Chronic Ethanol Intake But Not of Early Ethanol Intake. Parallel Effects on Ethanol-Induced Saccharin Motivation. Alcoholism: Clinical and Experimental Research, 2016, 40, 1044-1051.	1.4	35
47	Depletion of Hepatic Glutathione by Ethanol Occurs Independently of Ethanol Metabolism. Alcoholism: Clinical and Experimental Research, 1988, 12, 224-228.	1.4	34
48	Genetic and Environmental Influences on Ethanol Consumption: Perspectives From Preclinical Research. Alcoholism: Clinical and Experimental Research, 2010, 34, 976-987.	1.4	33
49	The "First Hit―Toward Alcohol Reinforcement: Role of Ethanol Metabolites. Alcoholism: Clinical and Experimental Research, 2015, 39, 776-786.	1.4	33
50	Liver cell enlargement induced by chronic alcohol consumption: studies on its causes and consequences. Clinical Biochemistry, 1982, 15, 189-192.	0.8	31
51	Binding of Acetaldehyde to a Glutathione Metabolite: Mass Spectrometric Characterization of an Acetaldehyde-Cysteinylglycine Conjugate. Alcoholism: Clinical and Experimental Research, 2003, 27, 1613-1621.	1.4	31
52	Aspirin and Nâ€acetylcysteine coâ€administration markedly inhibit chronic ethanol intake and block relapse binge drinking: Role of neuroinflammationâ€oxidative stress selfâ€perpetuation. Addiction Biology, 2021, 26, e12853.	1.4	31
53	Variation in mortality from ischemic heart disease in relation to alcohol and milk consumption. Medical Hypotheses, 1983, 12, 321-329.	0.8	30
54	Histochemical demonstration of sinusoidal γ-glutamyltransferase activity by substrate protection fixation: Comparative studies in rat and guinea pig liver. Hepatology, 1991, 14, 857-863.	3.6	30

#	Article	IF	CITATIONS
55	Inhibition of tumor necrosis factor alpha secretion and prevention of liver injury in ethanol-fed rats by antisense oligonucleotides. Biochemical Pharmacology, 2005, 69, 569-577.	2.0	30
56	The Alcohol Deprivation Effect: Marked Inhibition by Anticatalase Gene Administration into the Ventral Tegmental Area in Rats. Alcoholism: Clinical and Experimental Research, 2013, 37, 1278-1285.	1.4	30
57	Genotyping of Mitochondrial Aldehyde Dehydrogenase Locus of Native American Indians. Alcoholism: Clinical and Experimental Research, 1990, 14, 531-533.	1.4	29
58	Long-term treatment of alcoholic liver disease with propylthiouracil. Part 2: Influence of drop-out rates and of continued alcohol consumption in a clinical trial. Journal of Hepatology, 1994, 20, 343-349.	1.8	29
59	Inhibition of Gene Expression by Triple Helix Formation in Hepatoma Cells. Journal of Biological Chemistry, 1995, 270, 28402-28407.	1.6	29
60	Longâ€term inhibition of ethanol intake by the administration of an aldehyde dehydrogenaseâ€2 (<scp>ALDH</scp> 2)â€coding lentiviral vector into the ventral tegmental area of rats. Addiction Biology, 2015, 20, 336-344.	1.4	28
61	(R)-Salsolinol, a product of ethanol metabolism, stereospecifically induces behavioral sensitization and leads to excessive alcohol intake. Addiction Biology, 2016, 21, 1063-1071.	1.4	28
62	Commonality of Ethanol and Nicotine Reinforcement and Relapse in Wistarâ€Derived UChB Rats: Inhibition by <i>N</i> â€Acetylcysteine. Alcoholism: Clinical and Experimental Research, 2018, 42, 1988-1999.	1.4	28
63	Effect of propylthiouracil on the ethanol-induced increase in liver oxygen consumption in awake rats. Hepatology, 1993, 18, 415-421.	3.6	27
64	Ethanol Vapor above Skin: Determination by a Gas Sensor Instrument and Relationship with Plasma Concentration. Alcoholism: Clinical and Experimental Research, 1987, 11, 249-253.	1.4	26
65	Eliciting the Low-Activity Aldehyde Dehydrogenase Asian Phenotype by an Antisense Mechanism Results in an Aversion to Ethanol. Journal of Experimental Medicine, 2001, 194, 571-580.	4.2	26
66	Increases in Tumor Necrosis Factor- \hat{l}_{\pm} in Response to Thyroid Hormone-induced Liver Oxidative Stress in the Rat. Free Radical Research, 2002, 36, 719-725.	1.5	26
67	Polymorphisms in the mitochondrial aldehyde dehydrogenase gene (Aldh2) determine peak blood acetaldehyde levels and voluntary ethanol consumption in rats. Pharmacogenetics and Genomics, 2005, 15, 427-431.	0.7	25
68	Effects of propylthiouracil and methimazole on splanchnic hemodynamics in awake and unrestrained rats. Hepatology, 1989, 10, 273-278.	3.6	24
69	Characteristics of a New Urine, Serum, and Saliva Alcohol Reagent Strip. Alcoholism: Clinical and Experimental Research, 1992, 16, 222-227.	1.4	24
70	Hepatocyte Demand and Substrate Supply as Factors in the Susceptibility to Alcoholic Liver Injury: Pathogenesis and Prevention. Clinics in Gastroenterology, 1981, 10, 355-373.	0.6	24
71	Blood acetaldehyde and the ethanol-induced increase in splanchnic circulation. Biochemical Pharmacology, 1987, 36, 2673-2678.	2.0	23
72	Tolerance to Disulfiram Induced by Chronic Alcohol Intake in the Rat. Alcoholism: Clinical and Experimental Research, 2008, 32, 937-941.	1.4	23

#	Article	IF	CITATIONS
73	Intranasal mesenchymal stem cell secretome administration markedly inhibits alcohol and nicotine self-administration and blocks relapse-intake: mechanism and translational options. Stem Cell Research and Therapy, 2019, 10, 205.	2.4	23
74	Activated mesenchymal stem cell administration inhibits chronic alcohol drinking and suppresses relapseâ€like drinking in highâ€alcohol drinker rats. Addiction Biology, 2019, 24, 17-27.	1.4	23
75	Simultaneous Pair-Feeding System for the Administration of Alcohol-Containing Liquid Diets. Alcoholism: Clinical and Experimental Research, 1984, 8, 505-508.	1.4	22
76	Intracerebral Stem Cell Administration Inhibits Relapse-like Alcohol Drinking in Rats. Alcohol and Alcoholism, 2017, 52, 1-4.	0.9	22
77	Acquisition, Maintenance and Relapse-Like Alcohol Drinking: Lessons from the UChB Rat Line. Frontiers in Behavioral Neuroscience, 2017, 11, 57.	1.0	22
78	Intranasal Administration of Mesenchymal Stem Cell Secretome Reduces Hippocampal Oxidative Stress, Neuroinflammation and Cell Death, Improving the Behavioral Outcome Following Perinatal Asphyxia. International Journal of Molecular Sciences, 2020, 21, 7800.	1.8	22
79	Activation of ethanol metabolism by 2,4-dinitrophenol in the isolated perfused rat liver. Biochemical Pharmacology, 1974, 23, 2334-2337.	2.0	21
80	Hypermetabolic State and Hypoxic Liver Damage. , 1984, 2, 119-133.		21
81	The Spontaneously Hypertensive Rat as a Model for Studies on Metabolic Tolerance to Ethanol. Alcoholism: Clinical and Experimental Research, 1977, 1, 39-42.	1.4	20
82	A simple technique for quantifying intoxication-induced by low doses of ethanol. Pharmacology Biochemistry and Behavior, 1994, 48, 229-234.	1.3	20
83	Effects of Acute γ-Hexachlorocyclohexane Intoxication in Relation to the Redox Regulation of Nuclear Factor-κB, Cytokine Gene Expression, and Liver Injury in the Rat. Antioxidants and Redox Signaling, 2004, 6, 471-480.	2.5	20
84	Dopamine release in the nucleus accumbens (shell) of two lines of rats selectively bred to prefer or avoid ethanol. European Journal of Pharmacology, 2007, 573, 84-92.	1.7	20
85	Suppression by antithyroid drugs of experimental hepatic necrosis after ethanol treatment. Effect on thyroid gland or on peripheral deiodination?. Toxicology and Applied Pharmacology, 1979, 51, 145-155.	1.3	19
86	Effect of Age on Metabolic Tolerance and Hepatomegaly following Chronic Ethanol Administration. Alcoholism: Clinical and Experimental Research, 1984, 8, 528-534.	1.4	19
87	Effect of propylthiouracil treatment on NADPH-cytochrome P450 reductase levels, oxygen consumption and hydroxyl radical formation in liver microsomes from rats fed ethanol or acetone chronically. Biochemical Pharmacology, 1995, 49, 979-989.	2.0	19
88	Salsolinol and isosalsolinol: Condensation products of acetaldehyde and dopamine. Separation of their enantiomers in the presence of a large excess of dopamine. Journal of Pharmaceutical and Biomedical Analysis, 2012, 63, 170-174.	1.4	19
89	Innate gut microbiota predisposes to high alcohol consumption. Addiction Biology, 2021, 26, e13018.	1.4	19
90	ROLE OF THE SODIUM PUMP IN THE REGULATION OF LIVER METABOLISM IN EXPERIMENTAL ALCOHOLISM. Annals of the New York Academy of Sciences, 1974, 242, 560-572.	1.8	18

#	Article	IF	CITATIONS
91	Selection of phage-display library peptides recognizing ethanol targets on proteins. Alcohol, 2001, 25, 201-209.	0.8	18
92	N-Acetylcysteine and Acetylsalicylic Acid Inhibit Alcohol Consumption by Different Mechanisms: Combined Protection. Frontiers in Behavioral Neuroscience, 2020, 14, 122.	1.0	18
93	Effect of 6-n-propyl-2-thiouracil on the rate of ethanol metabolism in rats treated chronically with ethano. Biochemical Pharmacology, 1980, 29, 2951-2955.	2.0	17
94	Simple method for the preparation of antigen emulsions for immunization. Journal of Immunological Methods, 1993, 162, 133-140.	0.6	17
95	Genetic Polymorphism of Aldehyde Dehydrogenase 2 (ALDH2) in a Chinese Population: Gender, Age, Culture, and Genotypes of ALDH2. Biochemical Genetics, 2005, 43, 223-227.	0.8	17
96	Gene specific modifications unravel ethanol and acetaldehyde actions. Frontiers in Behavioral Neuroscience, 2013, 7, 80.	1.0	16
97	Complex I regulates mutant mitochondrial aldehyde dehydrogenase activity and voluntary ethanol consumption in rats. FASEB Journal, 2005, 19, 36-42.	0.2	15
98	On the characteristics of alcohol-induced liver enlargement and its possible hemodynamic consequences. Pharmacology Biochemistry and Behavior, 1983, 18, 433-437.	1.3	14
99	Sex differences in hepatic alcohol dehydrogenase activity in animal species. Biochemical Pharmacology, 1985, 34, 2385-2386.	2.0	14
100	The γ-glutamyltransferase/glutamine synthetase activity ratio. Journal of Hepatology, 1989, 8, 338-343.	1.8	14
101	Characterization of Adducts of Ethanol Metabolites with Cytochrome c. Alcoholism: Clinical and Experimental Research, 1999, 23, 26-37.	1.4	14
102	Ethanol increases tumor necrosis factor-alpha receptor-1 (TNF-R1) levels in hepatic, intestinal, and cardiac cells. Alcohol, 2004, 33, 9-15.	0.8	14
103	Activation of mitochondrial aldehyde dehydrogenase (ALDH2) by ALDA-1 reduces both the acquisition and maintenance of ethanol intake in rats: A dual mechanism?. Neuropharmacology, 2019, 146, 175-183.	2.0	13
104	New Instrument Using Gas Sensors for the Quantitative Analysis of Ethanol in Biological Liquids. Alcoholism: Clinical and Experimental Research, 1986, 10, 521-525.	1.4	12
105	Noninvasive Estimation of Blood Alcohol Concentrations: Ethanol Vapor Above the Eye. Alcoholism: Clinical and Experimental Research, 1988, 12, 255-258.	1.4	12
106	Aldehyde Dehydrogenase (ALDH2) Activity in Hepatoma Cells Is Reduced by an Adenoviral Vector Coding for an ALDH2 Antisense mRNA. Alcoholism: Clinical and Experimental Research, 2005, 29, 1384-1389.	1.4	12
107	RNA interference against aldehyde dehydrogenase-2: development of tools for alcohol research. Alcohol, 2009, 43, 97-104.	0.8	12
108	Effect of chronic alcohol intake on hepatic fibrosis and granulomas in marine schistosomiasis mansoni. Hepatology, 1981, 1, 416-418.	3.6	11

#	Article	IF	CITATIONS
109	Enhancement of noradrenaline-induced metabolic coronary dilatation by ethanol. European Journal of Pharmacology, 1980, 61, 279-286.	1.7	10
110	Inhibitory effect of propylthiouracil on the development of metabolic tolerance to ethanol. Biochemical Pharmacology, 1985, 34, 2377-2383.	2.0	10
111	Covalent binding of acetaldehyde to liver tubulin: A step in the right direction. Hepatology, 1989, 9, 161-162.	3.6	10
112	Hereditary hemochromatosis: An opportunity for gene therapy. Biological Research, 2006, 39, 113-24.	1.5	10
113	PPARÎ \pm Agonists Reduce Alcohol Drinking: Do They Act in the Brain or in the Liver?. Alcohol and Alcoholism, 2015, 50, 717-718.	0.9	10
114	Metabolic tolerance as related to initial rates of ethanol metabolism. Biochemical Pharmacology, 1982, 31, 3140-3141.	2.0	9
115	Propylthiouracil Treatment for Alcoholic Hepatitis: The Case of the Missing Thirty. Gastroenterology, 1982, 83, 945-946.	0.6	9
116	Alcohol dehydrogenase is not a major determinant of alcohol preference in mice. Alcohol, 1988, 5, 45-47.	0.8	9
117	Gamma-glutamyl transferase ectoactivity in the intact rat liver: Effect of chronic alcohol consumption. Alcohol, 1990, 7, 339-347.	0.8	9
118	In Vivo Delivery of Antisense Oligodeoxynucleotides into Rat Kupffer Cells. Journal of Liposome Research, 1998, 8, 521-535.	1.5	9
119	Propylthiouracil for Alcoholic Liver Disease. New England Journal of Medicine, 1988, 318, 1471-1472.	13.9	8
120	Trauma in Cirrhosis: An Indicator of the Pattern of Alcohol Abuse in Different Societies. Alcoholism: Clinical and Experimental Research, 1991, 15, 433-437.	1.4	8
121	Circulating Neutrophils and Liver Injury in Rat Models of Experimental Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 1998, 22, 197-201.	1.4	8
122	A Novel Morphine Drinking Model of Opioid Dependence in Rats. International Journal of Molecular Sciences, 2022, 23, 3874.	1.8	8
123	Alcohol-induced redox changes in the liver of the spontaneously hypertensive rat. Biochemical Pharmacology, 1981, 30, 1277-1282.	2.0	7
124	Detection of an alcohol specific product in urine of alcoholics. Biochemical and Biophysical Research Communications, 1986, 140, 924-927.	1.0	7
125	Administration of N-acetylcysteine Plus Acetylsalicylic Acid Markedly Inhibits Nicotine Reinstatement Following Chronic Oral Nicotine Intake in Female Rats. Frontiers in Behavioral Neuroscience, 2020, 14, 617418.	1.0	7
126	Proteomics in alcohol research. Alcohol Research, 2002, 26, 219-32.	1.0	7

#	Article	IF	CITATIONS
127	A dual treatment blocks alcohol binge-drinking relapse: Microbiota as a new player. Drug and Alcohol Dependence, 2022, 236, 109466.	1.6	7
128	Does an excess in liver proline increase the accumulation of collagen induced by carbon tetrachloride?. Experientia, 1979, 35, 1641-1642.	1.2	5
129	Hepatocyte enlargement and portal hypertension. Hepatology, 1990, 12, 1454-1454.	3.6	5
130	Generation of Acetate and Production of Ethyl-Lysine in the Reaction of Acetaldehyde Plus Serum Albumin. Alcohol, 1999, 17, 87-91.	0.8	5
131	The Research Society on Alcoholism. Addiction, 2002, 97, 483-486.	1.7	5
132	Use of an "acetaldehyde clamp―in the determination of low-KM aldehyde dehydrogenase activity in H4-II-E-C3 rat hepatoma cells. Alcohol, 2003, 31, 19-24.	0.8	5
133	Antisense gene delivered by an adenoassociated viral vector inhibits iron uptake in human intestinal cells: Potential application in hemochromatosis. Biochemical Pharmacology, 2005, 69, 1559-1566.	2.0	5
134	The inhibitory effect of testosterone on the development of metabolic tolerance to ethanol. Alcohol, 1984, 1, 283-291.	0.8	4
135	Even the frenchfoie gras de canard does not induce portal hypertension. Hepatology, 1990, 12, 1455-1458.	3.6	4
136	Reduction of voluntary alcohol consumption in the rat by transplantation of hypothalamic grafts. Brain Research, 1993, 632, 287-295.	1.1	4
137	Reciprocal gamma-glutamyl transferase and cystathionase activity in guinea pig, rat and human liver. Journal of Hepatology, 1994, 21, 683-684.	1.8	4
138	Protein Binding of alpha-Hydroxyethyl Free Radicals. Alcoholism: Clinical and Experimental Research, 2001, 25, 1723-1728.	1.4	4
139	Effect of alpha- and beta-blockers on ethanol metabolism. Drug and Alcohol Dependence, 1979, 4, 131-135.	1.6	3
140	Experimental Fibrogenesis: Enhancement by Chronic Ethanol Administration. Alcoholism: Clinical and Experimental Research, 1979, 3, 213-218.	1.4	3
141	What Makes Good Research, 1. Addiction, 1980, 75, 339-341.	1.7	3
142	Insulin is secreted upon glucose stimulation by both gastrointestinal enteroendocrine K-cells and L-cells engineered with the preproinsulin gene. Biological Research, 2011, 44, 301-305.	1.5	3
143	Acetaldehyde Burst Protection of ADH1B*2 Against Alcoholism: An Additional Hormesis Protection Against Esophageal Cancers Following Alcohol Consumption?. Alcoholism: Clinical and Experimental Research, 2011, 35, 806-810.	1.4	3
144	Gene and cell therapy on the acquisition and relapse-like binge drinking in a model of alcoholism: translational options. Gene Therapy, 2019, 26, 407-417.	2.3	3

#	Article	IF	CITATIONS
145	Autoimmune Responses Against Oxidant Stress and Acetaldehyde-Derived Epitopes in Human Alcohol Consumers. Alcoholism: Clinical and Experimental Research, 2000, 24, 1103-1109.	1.4	3
146	Insulin is secreted upon glucose stimulation by both gastrointestinal enteroendocrine K-cells and L-cells engineered with the preproinsulin gene. Biological Research, 2011, 44, 301-5.	1.5	3
147	A New Approach for the Rapid Detection of Common and Atypical Aldehyde Dehydrogenase Alleles. Clinical Chemistry and Laboratory Medicine, 1993, 31, 591-4.	1.4	2
148	Polymorphisms in mitochondrial genes encoding complex I subunits are maternal factors of voluntary alcohol consumption in the rat. Pharmacogenetics and Genomics, 2009, 19, 528-537.	0.7	2
149	GENDER DIFFERENCES IN ETHANOL METABOLISM IN THE RAT. Alcoholism: Clinical and Experimental Research, 1998, 22, 770-770.	1.4	1
150	Combined effects of aldehyde dehydrogenase variants and maternal mitochondrial genes on alcohol consumption. Alcohol Research, 2006, 29, 281-5.	1.0	1
151	Sustained Energy Deficit Following Perinatal Asphyxia: A Shift towards the Fructose-2,6-bisphosphatase (TIGAR)-Dependent Pentose Phosphate Pathway and Postnatal Development. Antioxidants, 2022, 11, 74.	2.2	1
152	Relationships between liver histologic lesions and portal hypertension in patients with alcoholic cirrhosis. Hepatology, 1985, 5, 703-705.	3.6	0
153	Reply (to letter by K. B. v.Moreau et al.). Alcoholism: Clinical and Experimental Research, 1992, 16, 143-143.	1.4	0
154	Dora B. Goldstein - In Memoriam. Alcoholism: Clinical and Experimental Research, 2012, 36, 2-3.	1.4	0
155	A dual mechanism fully blocks ethanol relapse: Role of vagal innervation. Addiction Biology, 2022, 27, e13140.	1.4	0
156	Biochemical and Clinical Aspects of Alcohol Metabolism.Vishwanath M. Sardesai. Quarterly Review of Biology, 1970, 45, 313-314.	0.0	0