Ivan Infante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8840978/publications.pdf

Version: 2024-02-01

41344 53230 7,993 126 49 85 citations h-index g-index papers 135 135 135 7987 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Reactivity of CsPbBr ₃ Nanocrystals toward Acid/Base Ligands. ACS Nano, 2022, 16, 1444-1455.	14.6	33
2	Colloidal Bismuth Chalcohalide Nanocrystals. Angewandte Chemie, 2022, 134, .	2.0	5
3	Colloidal Bismuth Chalcohalide Nanocrystals. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
4	Cesium Manganese Bromide Nanocrystal Sensitizers for Broadband Vis-to-NIR Downshifting. ACS Energy Letters, 2022, 7, 1850-1858.	17.4	30
5	Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nature Communications, 2022, 13, 2587.	12.8	66
6	ZnCl ₂ Mediated Synthesis of InAs Nanocrystals with Aminoarsine. Journal of the American Chemical Society, 2022, 144, 10515-10523.	13.7	21
7	Classical Force-Field Parameters for CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2022, 126, 9898-9908.	3.1	8
8	Limits of Defect Tolerance in Perovskite Nanocrystals: Effect of Local Electrostatic Potential on Trap States. Journal of the American Chemical Society, 2022, 144, 11059-11063.	13.7	19
9	Halide perovskites as disposable epitaxial templates for the phase-selective synthesis of lead sulfochloride nanocrystals. Nature Communications, 2022, 13, .	12.8	16
10	Are There Good Alternatives to Lead Halide Perovskite Nanocrystals?. Nano Letters, 2021, 21, 6-9.	9.1	44
11	Halide Perovskite–Lead Chalcohalide Nanocrystal Heterostructures. Journal of the American Chemical Society, 2021, 143, 1435-1446.	13.7	55
12	The Future of Ligand Engineering in Colloidal Semiconductor Nanocrystals. Accounts of Chemical Research, 2021, 54, 1555-1564.	15.6	42
13	Acid–Base Mediated Ligand Exchange on Near-Infrared Absorbing, Indium-Based III–V Colloidal Quantum Dots. Journal of the American Chemical Society, 2021, 143, 4290-4301.	13.7	38
14	Ligand Adsorption Energy and the Postpurification Surface Chemistry of Colloidal Metal Chalcogenide Nanocrystals. Chemistry of Materials, 2021, 33, 2796-2803.	6.7	13
15	Dynamic Formation of Metal-Based Traps in Photoexcited Colloidal Quantum Dots and Their Relevance for Photoluminescence. Chemistry of Materials, 2021, 33, 3349-3358.	6.7	20
16	Sb-Doped Metal Halide Nanocrystals: A OD versus 3D Comparison. ACS Energy Letters, 2021, 6, 2283-2292.	17.4	83
17	An Overview of Computational Studies on Colloidal Semiconductor Nanocrystals. Chimia, 2021, 75, 427.	0.6	5
18	Guidelines for the characterization of metal halide nanocrystals. Trends in Chemistry, 2021, 3, 631-644.	8.5	9

#	Article	IF	CITATIONS
19	Shape, Electronic Structure, and Trap States in Indium Phosphide Quantum Dots. Chemistry of Materials, 2021, 33, 6885-6896.	6.7	22
20	Effect of Ligands and Solvents on the Stability of Electron Charged CdSe Colloidal Quantum Dots. Journal of Physical Chemistry C, 2021, 125, 23968-23975.	3.1	19
21	Isolated [SbCl ₆] ^{3–} Octahedra Are the Only Active Emitters in Rb ₇ Sb ₃ Cl ₁₆ Nanocrystals. ACS Energy Letters, 2021, 6, 3952-3959.	17.4	15
22	Fast Intrinsic Emission Quenching in Cs ₄ PbBr ₆ Nanocrystals. Nano Letters, 2021, 21, 8619-8626.	9.1	16
23	Cs ₃ Cu ₄ In ₂ Cl ₁₃ Nanocrystals: A Perovskite-Related Structure with Inorganic Clusters at A Sites. Inorganic Chemistry, 2020, 59, 548-554.	4.0	16
24	Colloidal Bi-Doped Cs ₂ Ag _{1–<i>x</i>} Na _{<i>x</i>} InCl ₆ Nanocrystals: Undercoordinated Surface Cl Ions Limit their Light Emission Efficiency. , 2020, 2, 1442-1449.		41
25	Alloy CsCd <i>_x</i> Pb _{1â€"<i>x</i>} Br ₃ Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emission. Chemistry of Materials, 2020, 32, 10641-10652.	6.7	45
26	Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures. Journal of the American Chemical Society, 2020, 142, 10198-10211.	13.7	34
27	Compositional Tuning of Carrier Dynamics in Cs ₂ Na _{1–<i>x</i>} Ag _{<i>x</i>} BiCl ₆ Double-Perovskite Nanocrystals. ACS Energy Letters, 2020, 5, 1840-1847.	17.4	63
28	Electronic Structure Engineering Achieved via Organic Ligands in Silicon Nanocrystals. Chemistry of Materials, 2020, 32, 6326-6337.	6.7	17
29	Bright Blue Emitting Cu-Doped Cs ₂ ZnCl ₄ Colloidal Nanocrystals. Chemistry of Materials, 2020, 32, 5897-5903.	6.7	63
30	Phonon-Mediated and Weakly Size-Dependent Electron and Hole Cooling in CsPbBr ₃ Nanocrystals Revealed by Atomistic Simulations and Ultrafast Spectroscopy. Nano Letters, 2020, 20, 1819-1829.	9.1	41
31	Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplatelets. Journal of Physical Chemistry Letters, 2020, 11, 3339-3344.	4.6	24
32	Directional Anisotropy of the Vibrational Modes in 2D-Layered Perovskites. ACS Nano, 2020, 14, 4689-4697.	14.6	69
33	Elucidating the Trends in Reactivity of Azaâ€1,3â€Dipolar Cycloadditions. European Journal of Organic Chemistry, 2019, 2019, 378-386.	2.4	37
34	Ruthenium-Decorated Cobalt Selenide Nanocrystals for Hydrogen Evolution. ACS Applied Nano Materials, 2019, 2, 5695-5703.	5.0	28
35	Emissive Bi-Doped Double Perovskite Cs ₂ Ag _{1–<i>x</i>} Na _{<i>x</i>} InCl ₆ Nanocrystals. ACS Energy Letters, 2019, 4, 1976-1982.	17.4	198
36	Defects in Lead Halide Perovskite Nanocrystals: Analogies and (Many) Differences with the Bulk. ACS Energy Letters, 2019, 4, 2739-2747.	17.4	89

#	Article	IF	Citations
37	Alkyl Phosphonic Acids Deliver CsPbBr ₃ Nanocrystals with High Photoluminescence Quantum Yield and Truncated Octahedron Shape. Chemistry of Materials, 2019, 31, 9140-9147.	6.7	125
38	Ultrathin Orthorhombic PbS Nanosheets. Chemistry of Materials, 2019, 31, 8145-8153.	6.7	37
39	Stable Ligand Coordination at the Surface of Colloidal CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 3715-3726.	4.6	77
40	QMflows: A Tool Kit for Interoperable Parallel Workflows in Quantum Chemistry. Journal of Chemical Information and Modeling, 2019, 59, 3191-3197.	5.4	32
41	Resurfacing halide perovskite nanocrystals. Science, 2019, 364, 833-834.	12.6	143
42	Role of Surface Reduction in the Formation of Traps in ⟨i>n⟨li>-Doped II–VI Semiconductor Nanocrystals: How to Charge without Reducing the Surface. Chemistry of Materials, 2019, 31, 4575-4583.	6.7	48
43	Po-Containing Molecules in Fusion and Fission Reactors. Journal of Physical Chemistry Letters, 2019, 10, 2879-2884.	4.6	11
44	Simultaneous Cationic and Anionic Ligand Exchange For Colloidally Stable CsPbBr ₃ Nanocrystals. ACS Energy Letters, 2019, 4, 819-824.	17.4	173
45	Fully Inorganic Ruddlesden–Popper Double Cl–I and Triple Cl–Br–I Lead Halide Perovskite Nanocrystals. Chemistry of Materials, 2019, 31, 2182-2190.	6.7	60
46	Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals. ACS Energy Letters, 2019, 4, 63-74.	17.4	308
47	Spectrally Resolved Ultrafast Exciton Transfer in Mixed Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2019, 10, 419-426.	4.6	74
48	Tuning Electron–Phonon Interactions in Nanocrystals through Surface Termination. Nano Letters, 2018, 18, 2233-2242.	9.1	68
49	Colloidal CsPbX ₃ (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability. ACS Energy Letters, 2018, 3, 641-646.	17.4	647
50	Ligand Displacement Exposes Binding Site Heterogeneity on CdSe Nanocrystal Surfaces. Chemistry of Materials, 2018, 30, 1178-1186.	6.7	116
51	Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nature Materials, 2018, 17, 35-42.	27.5	99
52	Colloidal CdSe Nanoplatelets, A Model for Surface Chemistry/Optoelectronic Property Relations in Semiconductor Nanocrystals. Journal of the American Chemical Society, 2018, 140, 13292-13300.	13.7	126
53	The Phosphine Oxide Route toward Lead Halide Perovskite Nanocrystals. Journal of the American Chemical Society, 2018, 140, 14878-14886.	13.7	136
54	Finding and Fixing Traps in II–VI and III–V Colloidal Quantum Dots: The Importance of Z-Type Ligand Passivation. Journal of the American Chemical Society, 2018, 140, 15712-15723.	13.7	166

#	Article	IF	Citations
55	Shape-Pure, Nearly Monodispersed CsPbBr ₃ Nanocubes Prepared Using Secondary Aliphatic Amines. Nano Letters, 2018, 18, 7822-7831.	9.1	132
56	The Surface Chemistry of Colloidal HgSe Nanocrystals, toward Stoichiometric Quantum Dots by Design. Chemistry of Materials, 2018, 30, 7637-7647.	6.7	25
57	Efficient Hot Electron Transfer in Quantum Dot-Sensitized Mesoporous Oxides at Room Temperature. Nano Letters, 2018, 18, 5111-5115.	9.1	21
58	Probing Solvent–Ligand Interactions in Colloidal Nanocrystals by the NMR Line Broadening. Chemistry of Materials, 2018, 30, 5485-5492.	6.7	117
59	Highly Emissive Selfâ€Trapped Excitons in Fully Inorganic Zeroâ€Dimensional Tin Halides. Angewandte Chemie - International Edition, 2018, 57, 11329-11333.	13.8	242
60	Highly Emissive Selfâ€Trapped Excitons in Fully Inorganic Zeroâ€Dimensional Tin Halides. Angewandte Chemie, 2018, 130, 11499-11503.	2.0	37
61	Hot-electron transfer in quantum-dot heterojunction films. Nature Communications, 2018, 9, 2310.	12.8	48
62	Quantum-Confined and Enhanced Optical Absorption of Colloidal PbS Quantum Dots at Wavelengths with Expected Bulk Behavior. Nano Letters, 2017, 17, 1248-1254.	9.1	42
63	Binding and Packing in Two-Component Colloidal Quantum Dot Ligand Shells: Linear versus Branched Carboxylates. Journal of the American Chemical Society, 2017, 139, 3456-3464.	13.7	58
64	On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals. Chemistry of Materials, 2017, 29, 752-761.	6.7	231
65	Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective. Journal of Physical Chemistry Letters, 2017, 8, 5209-5215.	4.6	231
66	Force Field Parametrization of Colloidal CdSe Nanocrystals Using an Adaptive Rate Monte Carlo Optimization Algorithm. Journal of Chemical Theory and Computation, 2017, 13, 297-308.	5.3	13
67	Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices. ACS Nano, 2016, 10, 6861-6870.	14.6	49
68	Surface Termination, Morphology, and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals. ACS Energy Letters, 2016, 1, 1266-1272.	17.4	195
69	Frontispiece: The Electronic Structure of the Al3â^'Anion: Is it Aromatic?. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0
70	The Electronic Structure of the Al ₃ ^{â^'} Anion: Is it Aromatic?. Chemistry - A European Journal, 2015, 21, 9610-9614.	3.3	23
71	Quantum Chemical Calculations and Experimental Investigations of Molecular Actinide Oxides. Chemical Reviews, 2015, 115, 1725-1759.	47.7	103
72	"Darker-than-Black―PbS Quantum Dots: Enhancing Optical Absorption of Colloidal Semiconductor Nanocrystals via Short Conjugated Ligands. Journal of the American Chemical Society, 2015, 137, 1875-1886.	13.7	149

#	Article	IF	CITATIONS
73	Planar pentacoordinate carbons in CBe ₅ ^{4â°'} derivatives. Physical Chemistry Chemical Physics, 2015, 17, 4620-4624.	2.8	66
74	The effect of TiO ₂ surface on the electron injection efficiency in PbS quantum dot solar cells: a first-principles study. Physical Chemistry Chemical Physics, 2015, 17, 6076-6086.	2.8	20
75	First-Principles Modeling of Core/Shell Quantum Dot Sensitized Solar Cells. Journal of Physical Chemistry C, 2015, 119, 12739-12748.	3.1	20
76	Electronic Structure of Ni ₂ E ₂ Complexes (E = S, Se, Te) and a Global Analysis of M ₂ E ₂ Compounds: A Case for Quantized E ₂ ^{<i>n</i>$\beta \in \mathbb{R}^n$} Oxidation Levels with <i>n</i> $\beta \in \mathbb{R}^n$ American Chemical Society, 2015, 137, 4993-5011.	13.7	26
77	Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids. Nano Letters, 2015, 15, 3056-3066.	9.1	84
78	Theoretical study of the electronic spectra of neutral and cationic NpO and NpO2. Journal of Chemical Physics, 2015, 143, 074305.	3.0	6
79	Benchmark Assessment of Density Functional Methods on Group II–VI MX (M = Zn, Cd; X = S, Se, Te) Quantum Dots. Journal of Chemical Theory and Computation, 2014, 10, 76-89.	5.3	69
80	Epitaxially Connected PbSe Quantum-Dot Films: Controlled Neck Formation and Optoelectronic Properties. ACS Nano, 2014, 8, 11499-11511.	14.6	114
81	Quantum Dot Photoactivation of Pt(IV) Anticancer Agents: Evidence of an Electron Transfer Mechanism Driven by Electronic Coupling. Journal of Physical Chemistry C, 2014, 118, 8712-8721.	3.1	20
82	An "Intermediate Spin―Nickel Hydride Complex Stemming from Delocalized Ni ₂ (μ-H) ₂ Bonding. Journal of the American Chemical Society, 2014, 136, 13538-13541.	13.7	12
83	Electrochemical Control over Photoinduced Electron Transfer and Trapping in CdSe-CdTe Quantum-Dot Solids. ACS Nano, 2014, 8, 7067-7077.	14.6	42
84	Molecules with High Bond Orders and Ultrashort Bond Lengths: CrU, MoU, and WU. Inorganic Chemistry, 2013, 52, 2838-2843.	4.0	12
85	Theoretic study of the electronic spectra of neutral and cationic PaO and PaO2. Structural Chemistry, 2013, 24, 917-925.	2.0	8
86	Electronic spectroscopy and electronic structure of diatomic IrSi. Journal of Chemical Physics, 2013, 138, 154306.	3.0	12
87	On the directionality of halogen bonding. Physical Chemistry Chemical Physics, 2013, 15, 10350.	2.8	136
88	A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Physical Chemistry Chemical Physics, 2013, 15, 10996.	2.8	57
89	Communication: Chemical bonding in carbon dimer isovalent series from the natural orbital functional theory perspective. Journal of Chemical Physics, 2013, 138, 151102.	3.0	38
90	Ion energetics in electron-rich nanoplasmas. New Journal of Physics, 2012, 14, 075017.	2.9	7

#	Article	IF	CITATIONS
91	Modeling Surface Passivation of ZnS Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 2740-2750.	3.1	27
92	An interpretation of the absorption and emission spectra of the gold dimer using modern theoretical tools. Physical Chemistry Chemical Physics, 2012, 14, 8732.	2.8	22
93	A first-principles study of II–VI (II = Zn; VI = O, S, Se, Te) semiconductor nanostructures. Journal of Materials Chemistry, 2012, 22, 21453.	6.7	45
94	Unexpected trends in halogen-bond based noncovalent adducts. Chemical Communications, 2012, 48, 7708.	4.1	136
95	Pro-oxidant Activity of Aluminum: Stabilization of the Aluminum Superoxide Radical Ion. Journal of Physical Chemistry A, 2011, 115, 6717-6723.	2.5	60
96	Complete vs Restricted Active Space Perturbation Theory Calculation of the Cr ₂ Potential Energy Surface. Journal of Chemical Theory and Computation, 2011, 7, 1640-1646.	5.3	53
97	Electronic Structure and Bonding in Heteronuclear Dimers of V, Cr, Mo, and W: a CASSCF/CASPT2 Study. Inorganic Chemistry, 2011, 50, 9219-9229.	4.0	12
98	How accurate are electronic structure methods for actinoid chemistry?. Theoretical Chemistry Accounts, 2011, 129, 657-666.	1.4	65
99	Matrix Infrared Spectroscopy and a Theoretical Investigation of SUO and US2. European Journal of Inorganic Chemistry, 2011, 2011, 4457-4463.	2.0	11
100	On the Nature of Actinide– and Lanthanide–Metal Bonds in Heterobimetallic Compounds. Chemistry - A European Journal, 2011, 17, 8424-8433.	3.3	112
101	Noble Gas Matrices May Change the Electronic Structure of Trapped Molecules: The UO ₂ (Ng) ₄ [Ng=Ne, Ar] Case. Chemistry - A European Journal, 2010, 16, 12804-12807.	3.3	25
102	Equilibrium Mercury Isotope Fractionation between Dissolved Hg(II) Species and Thiol-Bound Hg. Environmental Science & Environ	10.0	230
103	U and P4Reaction Products: A Quantum Chemical and Matrix Isolation Spectroscopic Investigation. Inorganic Chemistry, 2010, 49, 9230-9235.	4.0	16
104	lonization Energies for the Actinide Mono- and Dioxides Series, from Th to Cm: Theory versus Experiment. Journal of Physical Chemistry A, 2010, 114, 6007-6015.	2.5	73
105	The chemiionization reactions Ce + O and Ce + O ₂ : Assignment of the observed chemielectron bands. International Journal of Quantum Chemistry, 2009, 109, 2068-2079.	2.0	21
106	Matrix Infrared Spectroscopic and Computational Investigation of Late Lanthanide Metal Hydride Species MH $<$ sub $<$ (i $>$ (sub $>$ (i $>$ (sub $>$ (i $>$)(i $>$)(i $>$)(i $>$ (i) (M = Tbâ $^{\circ}$ Lu, $<$ i $>$ x)(i $>$ (i)	Tj £.T 5Qq0 (0
107	Binding Motifs for Lanthanide Hydrides: A Combined Experimental and Theoretical Study of the MHx(H2)y Species (M = Laâ''Gd; $x = 1a^4$; $y = 0a^6$). Journal of Physical Chemistry A, 2009, 113, 2446-2455.	2.5	28
108	The Chemical Bond between Au(I) and the Noble Gases. Comparative Study of NgAuF and NgAu $<$ sup $>+sup> (Ng = Ar, Kr, Xe) by Density Functional and Coupled Cluster Methods. Journal of the American Chemical Society, 2008, 130, 1048-1060.$	13.7	260

#	Article	IF	Citations
109	Is Fullerene C ₆₀ Large Enough to Host a Multiply Bonded Dimetal?. Journal of the American Chemical Society, 2008, 130, 7459-7465.	13.7	73
110	Infrared Spectroscopy of Discrete Uranyl Anion Complexes. Journal of Physical Chemistry A, 2008, 112, 508-521.	2.5	53
111	A theoretical study of the ground state and lowest excited states of PuOO/+/+2 and PuO2O/+/+2. Physical Chemistry Chemical Physics, 2008, 10, 7278.	2.8	40
112	Infrared Spectra of the WH4(H2)4Complex in Solid Hydrogen. Journal of the American Chemical Society, 2008, 130, 1972-1978.	13.7	31
113	Theoretical Study of the Gas-Phase Chemiionization Reactions La \pm O and La \pm O ₂ . Journal of Physical Chemistry A, 2008, 112, 7825-7830.	2.5	19
114	A Fock space coupled cluster study on the electronic structure of the UO2, UO2+, U4+, and U5+ species. Journal of Chemical Physics, 2007, 127, 124308.	3.0	88
115	New Investigations of Geometric, Electronic, and Spectroscopic Properties of Tetrapyrrolic Macrocycles by a TDâ^'DFT Approach. Carbon, Nitrogen, and Chalcogen (O, S, Se) Peripheral Substitution Effects on Ni(II) Porphyrazinato Complexes. Journal of Chemical Theory and Computation, 2007, 3, 838-851.	5.3	9
116	Experimental and Theoretical Evidence for U(C ₆ H ₆) and Th(C ₆ H ₆) Complexes. Journal of Physical Chemistry A, 2007, 111, 11996-12000.	2.5	28
117	On the performance of the intermediate Hamiltonian Fock-space coupled-cluster method on linear triatomic molecules: The electronic spectra of NpO2+, NpO22+, and PuO22+. Journal of Chemical Physics, 2006, 125, 074301.	3.0	63
118	A QM/MM study on the aqueous solvation of the tetrahydroxouranylate [UO2(OH)4]2â^' complex ion. Journal of Computational Chemistry, 2006, 27, 1156-1162.	3.3	12
119	QM/MM study of aqueous solvation of the uranyl fluoride [UO2F42?] complex. Journal of Computational Chemistry, 2004, 25, 386-392.	3.3	35
120	The importance of spin-orbit coupling and electron correlation in the rationalization of the ground state of the CUO molecule. Journal of Chemical Physics, 2004, 121, 5783-5788.	3.0	32
121	Role of methyl substitution on the spectroscopic properties of porphyrazines. A TDDFT study using pure and hybrid functionals on porphyrazine and its octamethyl derivative. Chemical Physics Letters, 2003, 367, 308-318.	2.6	19
122	A First Theoretical Study on the Origin of the Metal-Mediated Regioselective Opening of 2,3-Epoxy Alcohols. Journal of Organic Chemistry, 2003, 68, 3773-3780.	3.2	9
123	Computational Chemistry to Design Colloidally Stable and Trap-free Perovskite Nanocrystals. , 0, , .		0
124	Size- and Temperature- Dependent Hot Carrier Cooling in CsPbBr3 Nanocrystals., 0, , .		0
125	The Surface Chemistry of Colloidal II-VI Two-Dimensional Nanoplatelets. , 0, , .		0
126	Phonon-Mediated and Weakly Size-Dependent Electron and Hole Cooling in CsPbBr3 Nanocrystals Revealed by Atomistic Simulations and Ultrafast Spectroscopy. , 0, , .		0