Gregory W Peterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8840789/publications.pdf

Version: 2024-02-01

		36271	36008
121	9,860	51	97
papers	citations	h-index	g-index
100	100	100	0522
123	123	123	8533
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly Breathable Chemically Protective MOFâ€Fiber Catalysts. Advanced Functional Materials, 2022, 32, 2108004.	7.8	19
2	Green MOF-Fabrics: Benign, Scalable Sorption-Vapor Synthesis of Catalytic Composites to Protect against Phosphorus-Based Toxins. ACS Sustainable Chemistry and Engineering, 2022, 10, 2699-2707.	3.2	8
3	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
4	Impact of zinc salt counterion on poly(ethylene oxide) solution viscosity, conductivity, and ability to generate electrospun MOF/nanofiber composites. Polymer, 2022, 252, 124816.	1.8	5
5	Graphene Oxide and Metal–Organic Framework-Based Breathable Barrier Membranes for Toxic Vapors. ACS Applied Materials & Interfaces, 2022, 14, 31321-31331.	4.0	12
6	<scp>Metal–organic framework polymer</scp> composite enhancement via acyl chloride modification. Polymer International, 2021, 70, 783-789.	1.6	11
7	Doubly Protective MOFâ€Photoâ€Fabrics: Facile Templateâ€Free Synthesis of PCNâ€222â€Textiles Enables Rapid Hydrolysis, Photoâ€Hydrolysis and Selective Oxidation of Multiple Chemical Warfare Agents and Simulants. Chemistry - A European Journal, 2021, 27, 1465-1472.	1.7	24
8	Fibre-based composites from the integration of metal–organic frameworks and polymers. Nature Reviews Materials, 2021, 6, 605-621.	23.3	128
9	Strong, Ductile MOF–Poly(urethane urea) Composites. Chemistry of Materials, 2021, 33, 3164-3171.	3.2	25
10	Battling Chemical Weapons with Zirconium Hydroxide Nanoparticle Sorbent: Impact of Environmental Contaminants on Sarin Sequestration and Decomposition. Langmuir, 2021, 37, 6923-6934.	1.6	8
11	Stretchable and Multi-Metal–Organic Framework Fabrics Via High-Yield Rapid Sorption-Vapor Synthesis and Their Application in Chemical Warfare Agent Hydrolysis. ACS Applied Materials & Interfaces, 2021, 13, 31279-31284.	4.0	13
12	Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based MOF/hydrogel composites. Chem Catalysis, 2021, 1, 721-733.	2.9	49
13	Immobilized Regenerable Active Chlorine within a Zirconium-Based MOF Textile Composite to Eliminate Biological and Chemical Threats. Journal of the American Chemical Society, 2021, 143, 16777-16785.	6.6	64
14	Protective Fabrics: Metal-Organic Framework Textiles for Rapid Photocatalytic Sulfur Mustard Simulant Detoxification. Matter, 2020, 2, 404-415.	5.0	92
15	Membrane-supported metal organic framework based nanopacked bed for protection against toxic vapors and gases. Separation and Purification Technology, 2020, 251, 117406.	3.9	11
16	Catalytic Degradation of an Organophosphorus Agent at Zn–OH Sites in a Metal–Organic Framework. Chemistry of Materials, 2020, 32, 6998-7004.	3.2	32
17	Bentâ€Butâ€Notâ€Broken: Reactive Metalâ€Organic Framework Composites from Elastomeric Phaseâ€Inverted Polymers. Advanced Functional Materials, 2020, 30, 2005517.	7.8	14
18	Structural Diversity of Zirconium Metal–Organic Frameworks and Effect on Adsorption of Toxic Chemicals. Journal of the American Chemical Society, 2020, 142, 21428-21438.	6.6	95

GREGORY W PETERSON

#	Article	IF	CITATIONS
19	Graphene Oxide-Based Membrane as a Protective Barrier against Toxic Vapors and Gases. ACS Applied Materials & Interfaces, 2020, 12, 11094-11103.	4.0	25
20	High-Throughput Screening of MOFs for Breakdown of V-Series Nerve Agents. ACS Applied Materials & Interfaces, 2020, 12, 14672-14677.	4.0	21
21	A Flexible Interpenetrated Zirconiumâ€Based Metal–Organic Framework with High Affinity toward Ammonia. ChemSusChem, 2020, 13, 1710-1714.	3.6	36
22	Nanomaterial Development, Characterization, and Integration Strategies for Chemical Warfare Defense. ACS Applied Materials & amp; Interfaces, 2020, 12, 14629-14630.	4.0	1
23	Uncovering the Role of Metal–Organic Framework Topology on the Capture and Reactivity of Chemical Warfare Agents. Chemistry of Materials, 2020, 32, 4609-4617.	3.2	70
24	Degradation and Detection of the Nerve Agent VX by a Chromophore-Functionalized Zirconium MOF. Chemistry of Materials, 2019, 31, 7417-7424.	3.2	39
25	Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12229-12235.	6.6	58
26	Scalable and Template-Free Aqueous Synthesis of Zirconium-Based Metal–Organic Framework Coating on Textile Fiber. Journal of the American Chemical Society, 2019, 141, 15626-15633.	6.6	148
27	Multivariate CuBTC Metal–Organic Framework with Enhanced Selectivity, Stability, Compatibility, and Processability. Chemistry of Materials, 2019, 31, 8459-8465.	3.2	24
28	Waterâ€Stable Chemicalâ€Protective Textiles via Euhedral Surfaceâ€Oriented 2D Cu–TCPP Metalâ€Organic Frameworks. Small, 2019, 15, e1805133.	5.2	72
29	Solid-Phase Detoxification of Chemical Warfare Agents using Zirconium-Based Metal Organic Frameworks and the Moisture Effects: Analyze via Digestion. ACS Applied Materials & Interfaces, 2019, 11, 21109-21116.	4.0	50
30	Surface Chemistry of Sulfur Dioxide on Zr(OH) ₄ Powder: The Role of Water. Journal of Physical Chemistry C, 2019, 123, 17205-17213.	1.5	12
31	Air, Water Vapor, and Aerosol Transport through Textiles with Surface Functional Coatings of Metal Oxides and Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 24683-24690.	4.0	18
32	Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal–organic frameworks for toxic chemical removal. CrystEngComm, 2019, 21, 2409-2415.	1.3	67
33	Integration of Metal–Organic Frameworks on Protective Layers for Destruction of Nerve Agents under Relevant Conditions. Journal of the American Chemical Society, 2019, 141, 20016-20021.	6.6	106
34	MOFwich: Sandwiched Metal–Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal. ACS Applied Materials & Interfaces, 2018, 10, 6820-6824.	4.0	34
35	Flexible SIS/HKUST-1 Mixed Matrix Composites as Protective Barriers against Chemical Warfare Agent Simulants. ACS Applied Materials & Interfaces, 2018, 10, 43080-43087.	4.0	31
36	High-throughput screening of solid-state catalysts for nerve agent degradation. Chemical Communications, 2018, 54, 5768-5771.	2.2	55

#	Article	IF	CITATIONS
37	Advancements in MOF characterization for enhanced MALDI sensing. , 2018, , .		0
38	Cerium(IV) vs Zirconium(IV) Based Metal–Organic Frameworks for Detoxification of a Nerve Agent. Chemistry of Materials, 2017, 29, 2672-2675.	3.2	135
39	Filtration of chlorine and hydrogen chloride gas by engineered UiO-66-NH2 metal-organic framework. Journal of Hazardous Materials, 2017, 332, 162-167.	6.5	28
40	Catalytic "MOF-Cloth―Formed via Directed Supramolecular Assembly of UiO-66-NH ₂ Crystals on Atomic Layer Deposition-Coated Textiles for Rapid Degradation of Chemical Warfare Agent Simulants. Chemistry of Materials, 2017, 29, 4894-4903.	3.2	177
41	Highly effective ammonia removal in a series of BrÃ,nsted acidic porous polymers: investigation of chemical and structural variations. Chemical Science, 2017, 8, 4399-4409.	3.7	89
42	A Microporous Amic Acid Polymer for Enhanced Ammonia Capture. ACS Applied Materials & Interfaces, 2017, 9, 33504-33510.	4.0	31
43	MOFabric: Electrospun Nanofiber Mats from PVDF/UiO-66-NH ₂ for Chemical Protection and Decontamination. ACS Applied Materials & amp; Interfaces, 2017, 9, 13632-13636.	4.0	187
44	Optimizing Toxic Chemical Removal through Defectâ€Induced UiOâ€66â€NH ₂ Metal–Organic Framework. Chemistry - A European Journal, 2017, 23, 15913-15916.	1.7	70
45	Environmental Effects on Zirconium Hydroxide Nanoparticles and Chemical Warfare Agent Decomposition: Implications of Atmospheric Water and Carbon Dioxide. ACS Applied Materials & Interfaces, 2017, 9, 39747-39757.	4.0	64
46	Tuning the Morphology and Activity of Electrospun Polystyrene/UiO-66-NH ₂ Metal–Organic Framework Composites to Enhance Chemical Warfare Agent Removal. ACS Applied Materials & Interfaces, 2017, 9, 32248-32254.	4.0	93
47	Sensing of NO2 with zirconium hydroxide via frequency-dependent electrical impedance spectroscopy. Dalton Transactions, 2017, 46, 10791-10797.	1.6	1
48	Direct Surface Growth Of UIO-66-NH ₂ on Polyacrylonitrile Nanofibers for Efficient Toxic Chemical Removal. Industrial & Engineering Chemistry Research, 2017, 56, 14502-14506.	1.8	69
49	LiO-66-NH ₂ Metal–Organic Framework (MOF) Nucleation on TiO ₂ , ZnO, and Al ₂ O ₃ Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants. ACS Applied Materials & amp: Interfaces, 2017, 9, 44847-44855.	4.0	163
50	Chemical Warfare Agents Detoxification Properties of Zirconium Metal–Organic Frameworks by Synergistic Incorporation of Nucleophilic and Basic Sites. ACS Applied Materials & Interfaces, 2017, 9, 23967-23973.	4.0	100
51	Extraordinary NO ₂ Removal by the Metal–Organic Framework UiOâ€66â€NH ₂ . Angewandte Chemie, 2016, 128, 6343-6346.	1.6	25
52	A fiber optic, ultraviolet light-emitting diode-based, two wavelength fluorometer for monitoring reactive adsorption. Review of Scientific Instruments, 2016, 87, 035121.	0.6	4
53	Detoxification of Chemical Warfare Agents Using a Zr ₆ â€Based Metal–Organic Framework/Polymer Mixture. Chemistry - A European Journal, 2016, 22, 14864-14868.	1.7	93
54	Diffusion of CO ₂ in Large Crystals of Cu-BTC MOF. Journal of the American Chemical Society, 2016, 138, 11449-11452.	6.6	84

GREGORY W PETERSON

#	Article	IF	CITATIONS
55	Ultraâ€Fast Degradation of Chemical Warfare Agents Using MOF–Nanofiber Kebabs. Angewandte Chemie, 2016, 128, 13418-13422.	1.6	50
56	Ultraâ€Fast Degradation of Chemical Warfare Agents Using MOF–Nanofiber Kebabs. Angewandte Chemie - International Edition, 2016, 55, 13224-13228.	7.2	179
57	Structural Impact on Dielectric Properties of Zirconia. Journal of Physical Chemistry C, 2016, 120, 26834-26840.	1.5	21
58	Detection of an explosive simulant via electrical impedance spectroscopy utilizing the UiO-66-NH ₂ metal–organic framework. Dalton Transactions, 2016, 45, 17113-17116.	1.6	13
59	Sorption of Ammonia in Mesoporous-Silica Ionic Liquid Composites. Industrial & Engineering Chemistry Research, 2016, 55, 12191-12204.	1.8	29
60	Extraordinary NO ₂ Removal by the Metal–Organic Framework UiOâ€66â€NH ₂ . Angewandte Chemie - International Edition, 2016, 55, 6235-6238.	7.2	160
61	Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chemical Science, 2016, 7, 2711-2716.	3.7	145
62	Copper Benzenetricarboxylate Metal–Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2016, 8, 9514-9522.	4.0	60
63	Manganese Oxide Nanoarchitectures as Broad-Spectrum Sorbents for Toxic Gases. ACS Applied Materials & Interfaces, 2016, 8, 1184-1193.	4.0	32
64	Hierarchical Pore Development by Plasma Etching of Zrâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2015, 21, 18029-18032.	1.7	36
65	Conformal and highly adsorptive metal–organic framework thin films via layer-by-layer growth on ALD-coated fiber mats. Journal of Materials Chemistry A, 2015, 3, 1458-1464.	5.2	100
66	Destruction of chemical warfare agents using metal–organic frameworks. Nature Materials, 2015, 14, 512-516.	13.3	790
67	Removal of chlorine gas by an amine functionalized metal–organic framework via electrophilic aromatic substitution. Chemical Communications, 2015, 51, 12474-12477.	2.2	66
68	Modification of Fibers with Nanostructures Using Reactive Dye Chemistry. Industrial & Engineering Chemistry Research, 2015, 54, 3821-3827.	1.8	32
69	Reduced Chemical Warfare Agent Sorption in Polyurethane-Painted Surfaces via Plasma-Enhanced Chemical Vapor Deposition of Perfluoroalkanes. ACS Applied Materials & Interfaces, 2015, 7, 6402-6405.	4.0	10
70	Multifunctional Purification and Sensing of Toxic Hydride Gases by CuBTC Metal–Organic Framework. Industrial & Engineering Chemistry Research, 2015, 54, 3626-3633.	1.8	48
71	Tailoring the Pore Size and Functionality of UiO-Type Metal–Organic Frameworks for Optimal Nerve Agent Destruction. Inorganic Chemistry, 2015, 54, 9684-9686.	1.9	157
72	Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr ₆ -Based Metal–Organic Frameworks. Inorganic Chemistry, 2015, 54, 10829-10833.	1.9	132

#	Article	IF	CITATIONS
73	Facile Conversion of Hydroxy Double Salts to Metal–Organic Frameworks Using Metal Oxide Particles and Atomic Layer Deposition Thin-Film Templates. Journal of the American Chemical Society, 2015, 137, 13756-13759.	6.6	174
74	Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air. Chemical Engineering Science, 2015, 124, 118-124.	1.9	194
75	Bamboo-type carbon nanotube solids derived from low-cost epoxy resins and their potential application for air filtration. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	2
76	Detoxification of chemical warfare agents by CuBTC. Journal of Porous Materials, 2014, 21, 121-126.	1.3	70
77	Metal–Organic Frameworks for Air Purification of Toxic Chemicals. Chemical Reviews, 2014, 114, 5695-5727.	23.0	825
78	Photoluminescence of zirconium hydroxide: Origin of a chemisorption-induced â€~red-stretch'. Chemical Physics Letters, 2014, 592, 297-301.	1.2	5
79	Metal–Organic Frameworks: Highly Adsorptive, MOFâ€Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition (Adv. Mater. Interfaces 4/2014). Advanced Materials Interfaces, 2014, 1, .	1.9	5
80	Highly Adsorptive, MOFâ€Functionalized Nonwoven Fiber Mats for Hazardous Gas Capture Enabled by Atomic Layer Deposition. Advanced Materials Interfaces, 2014, 1, 1400040.	1.9	99
81	Metal–Organic Frameworks for Oxygen Storage. Angewandte Chemie - International Edition, 2014, 53, 14092-14095.	7.2	106
82	Engineering UiO-66-NH ₂ for Toxic Gas Removal. Industrial & Engineering Chemistry Research, 2014, 53, 701-707.	1.8	127
83	The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. Journal of Materials Chemistry A, 2013, 1, 11922.	5.2	466
84	Effects of pelletization pressure on the physical and chemical properties of the metal–organic frameworks Cu3(BTC)2 and UiO-66. Microporous and Mesoporous Materials, 2013, 179, 48-53.	2.2	139
85	Ambient Temperature Vapor Pressure and Adsorption Capacity for (Perfluorooctyl) Ethylene, 3-(Perfluorobutyl)propanol, Perfluorohexanoic Acid, Ethyl Perfluorooctanoate, and Perfluoro-3,6-dioxaheptanoic Acid. Journal of Chemical & Engineering Data, 2013, 58, 1806-1812.	1.0	9
86	Zirconium Hydroxide–Metal–Organic Framework Composites for Toxic Chemical Removal. Industrial & Engineering Chemistry Research, 2013, 52, 5462-5469.	1.8	37
87	Removal of airborne toxic chemicals by porous organic polymers containing metal–catecholates. Chemical Communications, 2013, 49, 2995.	2.2	39
88	Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. Journal of Materials Chemistry A, 2013, 1, 5642.	5.2	578
89	Structure–activity relationship of Au/ZrO2 catalyst on formation of hydroxyl groups and its influence on CO oxidation. Journal of Materials Chemistry A, 2013, 1, 6051.	5.2	36
90	Mass Transfer and Adsorption Equilibrium for Low Volatility Alkanes in BPL Activated Carbon. Langmuir, 2013, 29, 2935-2945.	1.6	14

#	Article	IF	CITATIONS
91	Preparation of Hydrophobic Metal-Organic Frameworks via Plasma Enhanced Chemical Vapor Deposition of Perfluoroalkanes for the Removal of Ammonia. Journal of Visualized Experiments, 2013, ,	0.2	7
92	Porphyrin-embedded organosilicate materials for ammonia adsorption. Journal of Porphyrins and Phthalocyanines, 2012, 16, 1252-1260.	0.4	5
93	Organoalkoxysilane-Grafted Silica Composites for Acidic and Basic Gas Adsorption. Langmuir, 2012, 28, 17450-17456.	1.6	20
94	Sulfur dioxide and nitrogen dioxide adsorption on zinc oxide and zirconium hydroxide nanoparticles and the effect on photoluminescence. Applied Surface Science, 2012, 258, 5778-5785.	3.1	38
95	Effect of Adsorbed Water and Surface Hydroxyls on the Hydrolysis of VX, GD, and HD on Titania Materials: The Development of Self-Decontaminating Paints. Industrial & Engineering Chemistry Research, 2012, 51, 3598-3603.	1.8	68
96	Removal of Chlorine Gases from Streams of Air Using Reactive Zirconium Hydroxide Based Filtration Media. Industrial & Engineering Chemistry Research, 2012, 51, 2675-2681.	1.8	42
97	Adsorption of Ammonia by Sulfuric Acid Treated Zirconium Hydroxide. Langmuir, 2012, 28, 10478-10487.	1.6	42
98	Enhanced Stability of Cu-BTC MOF via Perfluorohexane Plasma-Enhanced Chemical Vapor Deposition. Journal of the American Chemical Society, 2012, 134, 1486-1489.	6.6	246
99	Reactions of VX, GD, and HD with Zr(OH) ₄ : Near Instantaneous Decontamination of VX. Journal of Physical Chemistry C, 2012, 116, 11606-11614.	1.5	154
100	Functionalized organosilicate materials for irritant gas removal. Chemical Engineering Science, 2012, 68, 376-382.	1.9	24
101	Evaluation of a robust, diimide-based, porous organic polymer (POP) as a high-capacity sorbent for representative chemical threats. Journal of Porous Materials, 2012, 19, 261-266.	1.3	22
102	Metal-catalyzed graphitic nanostructures as sorbents for vapor-phase ammonia. Journal of Materials Chemistry, 2011, 21, 3477.	6.7	18
103	Surface Chemistry and Morphology of Zirconia Polymorphs and the Influence on Sulfur Dioxide Removal. Journal of Physical Chemistry C, 2011, 115, 9644-9650.	1.5	53
104	Trifluoroethanol and19F Magic Angle Spinning Nuclear Magnetic Resonance as a Basic Surface Hydroxyl Reactivity Probe for Zirconium(IV) Hydroxide Structures. Langmuir, 2011, 27, 9458-9464.	1.6	9
105	Active carbon filter health condition detection with piezoelectric wafer active sensors. , 2011, , .		0
106	Surface hydroxyl concentration on Zr(OH)4 quantified by 1H MAS NMR. Chemical Physics Letters, 2011, 511, 384-388.	1.2	38
107	MOF-74 building unit has a direct impact on toxic gas adsorption. Chemical Engineering Science, 2011, 66, 163-170.	1.9	522
108	Effects of water on the removal of methyl bromide using triethylene diamine impregnated carbon. Carbon, 2010, 48, 81-88.	5.4	22

GREGORY W PETERSON

#	Article	IF	CITATIONS
109	Selective-combustion purification of bulk carbonaceous solids to produce graphitic nanostructures. Carbon, 2010, 48, 501-508.	5.4	26
110	The effect of oxidation on the surface chemistry of sulfur-containing carbons and their arsine adsorption capacity. Carbon, 2010, 48, 1779-1787.	5.4	62
111	Interactions of Arsine with Nanoporous Carbons: Role of Heteroatoms in the Oxidation Process at Ambient Conditions. Journal of Physical Chemistry C, 2010, 114, 6527-6533.	1.5	12
112	Role of TEDA as an Activated Carbon Impregnant for the Removal of Cyanogen Chloride from Air Streams: Synergistic Effect with Cu(II). Journal of Physical Chemistry C, 2010, 114, 20083-20090.	1.5	30
113	Enhanced Cyanogen Chloride Removal by the Reactive Zirconium Hydroxide Substrate. Industrial & Engineering Chemistry Research, 2010, 49, 11182-11187.	1.8	41
114	In situ sensing of adsorbed water in activated carbon using impedance measurements. Carbon, 2009, 47, 2442-2447.	5.4	3
115	Measurement of the impedance change of impregnated activated carbon during exposure to SO2 vapors at ambient temperatures. Carbon, 2009, 47, 3566-3573.	5.4	3
116	Catalytic Removal of Ethylene Oxide from Contaminated Airstreams by Alkali-Treated H-ZSM-5. ACS Symposium Series, 2009, , 235-248.	0.5	0
117	Zirconium Hydroxide as a Reactive Substrate for the Removal of Sulfur Dioxide. Industrial & Engineering Chemistry Research, 2009, 48, 1694-1698.	1.8	46
118	Ammonia Vapor Removal by Cu ₃ (BTC) ₂ and Its Characterization by MAS NMR. Journal of Physical Chemistry C, 2009, 113, 13906-13917.	1.5	208
119	Hâ^'ZSM-5 for the Removal of Ethylene Oxide:  Effects of Water on Filtration Performance. Industrial & Engineering Chemistry Research, 2008, 47, 185-191.	1.8	10
120	Interactions of Ammonia with the Surface of Microporous Carbon Impregnated with Transition Metal Chlorides. Journal of Physical Chemistry C, 2007, 111, 12705-12714.	1.5	96
121	Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angewandte Chemie, 0, , .	1.6	0