
Nasser-eddine Tatar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8840632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Existence and uniqueness for a problem involving Hilfer fractional derivative. Computers and Mathematics With Applications, 2012, 64, 1616-1626.	2.7	295
2	Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Mathematical Methods in the Applied Sciences, 2007, 30, 665-680.	2.3	121
3	Exponential and polynomial decay for a quasilinear viscoelastic equation. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68, 785-793.	1.1	118
4	Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives. Journal of Mathematical Analysis and Applications, 2005, 312, 488-501.	1.0	92
5	Power-type estimates for a nonlinear fractional differential equation. Nonlinear Analysis: Theory, Methods & Applications, 2005, 62, 1025-1036.	1.1	59
6	Uniform Stability of a Laminated Beam with Structural Memory. Qualitative Theory of Dynamical Systems, 2016, 15, 517-540.	1.7	49
7	Stabilization of a laminated beam with interfacial slip by boundary controls. Boundary Value Problems, 2015, 2015, .	0.7	46
8	Arbitrary decays in linear viscoelasticity. Journal of Mathematical Physics, 2011, 52, 013502.	1.1	43
9	Exponential decay for a quasilinear viscoelastic equation. Mathematische Nachrichten, 2009, 282, 1443-1450.	0.8	42
10	Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel. Applied Mathematics and Computation, 2005, 167, 1221-1235.	2.2	41
11	Exponential stabilization of a structure with interfacial slip. Discrete and Continuous Dynamical Systems, 2016, 36, 6285-6306.	0.9	39
12	Exponential decay for a viscoelastic problem with a singular kernel. Zeitschrift Fur Angewandte Mathematik Und Physik, 2009, 60, 640-650.	1.4	36
13	On a large class of kernels yielding exponential stability in viscoelasticity. Applied Mathematics and Computation, 2009, 215, 2298-2306.	2.2	34
14	A memory type boundary stabilization of a mildly damped wave equation. Electronic Journal of Qualitative Theory of Differential Equations, 1999, , 1-7.	0.5	24
15	A New Class of Kernels Leading to an Arbitrary Decay in Viscoelasticity. Mediterranean Journal of Mathematics, 2013, 10, 213-226.	0.8	23
16	Existence results for an evolution problem with fractional nonlocal conditions. Computers and Mathematics With Applications, 2010, 60, 2971-2982.	2.7	22
17	Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure and Applied Analysis, 2015, 14, 457-491.	0.8	22
18	Polynomial stability without polynomial decay of the relaxation function. Mathematical Methods in the Applied Sciences, 2008, 31, 1874-1886.	2.3	21

2

#	Article	IF	CITATIONS
19	The critical exponent for an ordinary fractional differential problem. Computers and Mathematics With Applications, 2010, 59, 1266-1270.	2.7	20
20	Uniform Stabilization of an Axially Moving Kirchhoff String by a Boundary Control of Memory Type. Journal of Dynamical and Control Systems, 2017, 23, 237-247.	0.8	20
21	A blow up result for a fractionally damped wave equation. Nonlinear Differential Equations and Applications, 2005, 12, 215-226.	0.8	19
22	Long time behavior for a nonlinear fractional model. Journal of Mathematical Analysis and Applications, 2007, 332, 441-454.	1.0	19
23	Absence of local and global solutions to an elliptic system with time-fractional dynamical boundary conditions. Siberian Mathematical Journal, 2007, 48, 477-488.	0.6	19
24	How far can relaxation functions be increasing in viscoelastic problems?. Applied Mathematics Letters, 2009, 22, 336-340.	2.7	19
25	On the nonexistence of blowing-up solutions to a fractional functional-differential equation. Georgian Mathematical Journal, 2012, 19, .	0.6	19
26	Control of a viscoelastic translational Euler–Bernoulli beam. Mathematical Methods in the Applied Sciences, 2017, 40, 237-254.	2.3	19
27	Stability of logarithmic type for a Hadamard fractional differential problem. Journal of Pseudo-Differential Operators and Applications, 2020, 11, 447-466.	0.7	19
28	The decay rate for a fractional differential equation. Journal of Mathematical Analysis and Applications, 2004, 295, 303-314.	1.0	18
29	Nonexistence results for a fractional problem arising in thermal diffusion in fractal media. Chaos, Solitons and Fractals, 2008, 36, 1205-1214.	5.1	18
30	Global existence and asymptotic behavior for a fractional differential equation. Applied Mathematics and Computation, 2007, 188, 1955-1962.	2.2	17
31	Stabilization of a viscoelastic Timoshenko beam. Applicable Analysis, 2013, 92, 27-43.	1.3	17
32	Exponential decay for a viscoelastically damped timoshenko beam. Acta Mathematica Scientia, 2013, 33, 505-524.	1.0	16
33	Elastic membrane equation with memory term and nonlinear boundary damping: global existence, decay and blowup of the solution. Acta Mathematica Scientia, 2013, 33, 84-106.	1.0	15
34	Stability of an Axially Moving Viscoelastic Beam. Journal of Dynamical and Control Systems, 2017, 23, 283-299.	0.8	15
35	A Nonexistence Result to a Cauchy Problem in Nonlinear One Dimensional Thermoelasticity. Journal of Mathematical Analysis and Applications, 2001, 254, 71-86.	1.0	14
36	Permanence extinction and global asymptotic stability in a stage structured system with distributed delays. Journal of Mathematical Analysis and Applications, 2005, 301, 187-207.	1.0	14

#	Article	IF	CITATIONS
37	Uniform boundedness and stability for a viscoelastic problem. Applied Mathematics and Computation, 2005, 167, 1211-1220.	2.2	14
38	Exponential stability and blow up for a problem with Balakrishnan–Taylor damping. Demonstratio Mathematica, 2011, 44, .	1.5	14
39	Blow-up of solutions for a nonlinear beam equation with fractional feedback. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 1402-1409.	1.1	14
40	ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS. Mathematical Modelling and Analysis, 2016, 21, 610-629.	1.5	14
41	Vibration Control of a Viscoelastic Translational Euler-Bernoulli Beam. Journal of Dynamical and Control Systems, 2018, 24, 167-199.	0.8	14
42	Control and exponential stabilization for the equation of an axially moving viscoelastic strip. Mathematical Methods in the Applied Sciences, 2017, 40, 6239-6253.	2.3	13
43	Unboundedness for the Euler–Bernoulli beam equation with a fractional boundary dissipation. Applied Mathematics and Computation, 2005, 161, 697-706.	2.2	12
44	Semilinear Volterra Integrodifferential Problems with Fractional Derivatives in the Nonlinearities. Abstract and Applied Analysis, 2011, 2011, 1-11.	0.7	12
45	Non-existence for fractionally damped fractional differential problems. Acta Mathematica Scientia, 2017, 37, 119-130.	1.0	12
46	On a perturbed kernel in viscoelasticity. Applied Mathematics Letters, 2011, 24, 766-770.	2.7	11
47	Viscoelastic Timoshenko Beams with Occasionally Constant Relaxation Functions. Applied Mathematics and Optimization, 2012, 66, 123-145.	1.6	11
48	Exponential stabilization of the full von Kármán beam by a thermal effect and a frictional damping. Georgian Mathematical Journal, 2013, 20, .	0.6	11
49	Stability of a thermoelastic laminated system subject to a neutral delay. Mathematical Methods in the Applied Sciences, 2020, 43, 281-304.	2.3	11
50	Nonexistence for the Laplace equation with a dynamical boundary condition of fractional type. Siberian Mathematical Journal, 2007, 48, 849-856.	0.6	10
51	Exponential stabilization of the Timoshenko system by a thermal effect with an oscillating kernel. Mathematical and Computer Modelling, 2011, 54, 301-314.	2.0	10
52	Uniform Decay for Solutions of an Axially Moving Viscoelastic Beam. Applied Mathematics and Optimization, 2017, 75, 343-364.	1.6	10
53	Control of an axially moving viscoelastic Kirchhoff string. Applicable Analysis, 2018, 97, 592-609.	1.3	10
54	Uniform Stabilization of aNonlinear Axially Moving String by a Boundary Control of Memory Type. Journal of Dynamical and Control Systems, 2018, 24, 313-323.	0.8	10

#	Article	IF	CITATIONS
55	Fractional Halanay Inequality and Application in Neural Network Theory. Acta Mathematica Scientia, 2019, 39, 1605-1618.	1.0	10
56	Existence and global attractivity of a periodic solution to a nonautonomous dispersal system with delays. Applied Mathematical Modelling, 2007, 31, 780-793.	4.2	9
57	Stabilization of the Timoshenko Beam by Thermal Effect. Mediterranean Journal of Mathematics, 2010, 7, 373-385.	0.8	9
58	Numerical schemes for anomalous diffusion of single-phase fluids in porous media. Communications in Nonlinear Science and Numerical Simulation, 2016, 39, 381-395.	3.3	9
59	Adaptive Stabilization of a Kirchhoff Moving String. Journal of Dynamical and Control Systems, 2020, 26, 255-263.	0.8	9
60	Decay rate of solutions for a Cauchy viscoelastic evolution equation. Indagationes Mathematicae, 2011, 22, 103-115.	0.4	8
61	Disturbance estimation based tracking control for periodic piecewise timeâ€varying delay systems. IET Control Theory and Applications, 2021, 15, 459-471.	2.1	8
62	On a boundary controller of fractional type. Nonlinear Analysis: Theory, Methods & Applications, 2010, 72, 3209-3215.	1.1	7
63	Uniform decay in viscoelasticity for kernels with small non-decreasingness zones. Applied Mathematics and Computation, 2012, 218, 7939-7946.	2.2	7
64	Oscillating kernels and arbitrary decays in viscoelasticity. Mathematische Nachrichten, 2012, 285, 1130-1143.	0.8	7
65	Stabilization of a viscoelastic Timoshenko beam fixed into a moving base. Mathematical Modelling of Natural Phenomena, 2019, 14, 501.	2.4	7
66	A neutral fractional Halanay inequality and application to a Cohen–Grossberg neural network system. Mathematical Methods in the Applied Sciences, 2021, 44, 10460-10476.	2.3	7
67	Control of systems with Holder continuous functions in the distributed delays. Carpathian Journal of Mathematics, 2014, 30, 123-128.	0.9	7
68	Control of a riser through the dynamic of the vessel. Applicable Analysis, 2016, 95, 1957-1973.	1.3	6
69	On the nonexistence of global solutions for a class of fractional integro-differential problems. Advances in Difference Equations, 2017, 2017, .	3.5	6
70	VIBRATION CONTROL OF A VISCOELASTIC FLEXIBLE MARINE RISER WITH VESSEL DYNAMICS. Mathematical Modelling and Analysis, 2018, 23, 433-452.	1.5	6
71	Breakdown for a Kirchhoff-type Beam with a Fractional Boundary Feedback. Journal of Dynamical and Control Systems, 2008, 14, 71-94.	0.8	5
72	Permanence and existence of a positive periodic solution to a periodic stage-structured system with infinite delay. Applied Mathematics and Computation, 2008, 202, 620-638.	2.2	5

#	Article	IF	CITATIONS
73	Long Time Behavior for a System of Differential Equations with Non-Lipschitzian Nonlinearities. Advances in Artificial Neural Systems, 2014, 2014, 1-7.	1.0	5
74	Stability for the damped wave equation with neutral delay. Mathematische Nachrichten, 2017, 290, 2401-2412.	0.8	5
75	Exponential stabilization of a neutrally delayed viscoelastic Timoshenko beam. Turkish Journal of Mathematics, 2019, 43, 595-611.	0.7	5
76	Asymptotlc Behavior of Solutions of Fractional Differential Equations with Hadamard Fractional Derivatives. Fractional Calculus and Applied Analysis, 2021, 24, 483-508.	2.2	5
77	Adaptive boundary stabilization of a nonlinear axially moving string. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2021, 101, e202000227.	1.6	5
78	Mild solutions for a problem involving fractional derivatives in the nonlinearity and in the non-local conditions. Advances in Difference Equations, 2011, 2011, .	3.5	4
79	Hopfield Neural Networks with Unbounded Monotone Activation Functions. Advances in Artificial Neural Systems, 2012, 2012, 1-5.	1.0	4
80	(L)-type activation functions in a system of ordinary differential equations. Journal of Information and Optimization Sciences, 2018, 39, 1637-1645.	0.3	4
81	Asymptotic Behavior of Solutions for a Class of Fractional Integro-differential Equations. Mediterranean Journal of Mathematics, 2018, 15, 1.	0.8	4
82	Halanay inequality with Hadamard derivative and application to a neural network system. Computational and Applied Mathematics, 2019, 38, 1.	2.2	4
83	Stabilisation of a viscoelastic flexible marine riser under unknown spatiotemporally varying disturbance. International Journal of Control, 2020, 93, 1547-1557.	1.9	4
84	Mittag–Leffler stability for a fractional Euler–Bernoulli problem. Chaos, Solitons and Fractals, 2021, 149, 111077.	5.1	4
85	The existence of mild and classical solutions for a second-order abstract fractional problem. Nonlinear Analysis: Theory, Methods & Applications, 2010, 73, 3130-3139.	1.1	3
86	Boundedness and power-type decay of solutions for a class of generalized fractional Langevin equations. Arabian Journal of Mathematics, 2019, 8, 79-94.	0.9	3
87	Nonexistence of global solutions for a fractional system of strongly coupledintegro-differential equations. Turkish Journal of Mathematics, 2019, 43, 2715-2730.	0.7	3
88	Mittagâ€Leffler stability for a fractional viscoelastic telegraph problem. Mathematical Methods in the Applied Sciences, 2021, 44, 14184-14205.	2.3	3
89	Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations and Control Theory, 2018, 7, 599-616.	1.3	3
90	Haraux Type Activation Functions in Neural Network Theory. British Journal of Mathematics & Computer Science, 2014, 4, 3163-3170.	0.3	3

#	Article	IF	CITATIONS
91	Exponential Decay for a System of Equations with Distributed Delays. Journal of Applied Mathematics, 2015, 2015, 1-6.	0.9	2
92	Well-posedness and stability for a fractional thermo-viscoelastic Timoshenko problem. Computational and Applied Mathematics, 2021, 40, 1.	2.2	2
93	Adaptive stabilization of a Timoshenko system by boundary feedback controls. Mathematical Methods in the Applied Sciences, 0, , .	2.3	2
94	Nonexistence of Global Solutions for Fractional Differential Problems with Power Type Source Term. Mediterranean Journal of Mathematics, 2021, 18, 1.	0.8	2
95	Existence and asymptotic behavior for a convection problem. Nonlinear Analysis: Theory, Methods & Applications, 2004, 59, 407-424.	1.1	1
96	ON A SECOND-ORDER DIFFERENTIAL PROBLEM WITH FRACTIONAL DERIVATIVES OF ORDER GREATER THAN ONE. Mathematical Modelling and Analysis, 2013, 18, 53-65.	1.5	1
97	On the stabilization of a Cauchy viscoelastic problem with singular kernel and nonlinear source term. Applicable Analysis, 2016, 95, 646-660.	1.3	1
98	Control of a thermo-viscoelastic translational Timoshenko beam. International Journal of Control, 2021, 94, 2161-2174.	1.9	1
99	Exponential decay for a nonlinear axially moving viscoelastic string. Mathematical Methods in the Applied Sciences, 2021, 44, 2209-2225.	2.3	1
100	Neural networks with distributed delays and Hölder continuous activation functions. Miskolc Mathematical Notes, 2018, 19, 631.	0.6	1
101	A nonlinear version of the distributed Halanay inequality and its application. Mathematical Methods in the Applied Sciences, 2022, 45, 2190-2203.	2.3	1
102	On global adaptive stabilization of a Kirchhoff moving string with variable density. Mathematical Methods in the Applied Sciences, 0, , .	2.3	1
103	Stabilization of a nonlinear Euler–Bernoulli beam. Arabian Journal of Mathematics, 2022, 11, 479-496.	0.9	1
104	Hadamard-Type Fractional Integro-Differential Problem: A Note on Some Asymptotic Behavior of Solutions. Fractal and Fractional, 2022, 6, 267.	3.3	1
105	Asymptotic Behavior for a Nondissipative and Nonlinear System of the Kirchhoff Viscoelastic Type. Journal of Applied Mathematics, 2012, 2012, 1-17.	0.9	0
106	Existence and stabilization of a Kirchhoff moving string with a distributed delay in the internal feedback. , 2017, , .		0
107	Long time behavior for a fractional Picard problem in a Hilbert space. Rendiconti Del Circolo Matematico Di Palermo, 2019, 68, 595-610.	1.3	0
108	Stability for a retarded impulsive Cohen–Grossberg BAM neural network system. Journal of Experimental and Theoretical Artificial Intelligence, 0, , 1-20.	2.8	0

#	Article	IF	CITATIONS
109	Long-time behaviour of a translational thermoelastic Timoshenko system with second sound. Applicable Analysis, 0, , 1-29.	1.3	0
110	Halanay inequality involving Caputo-Hadamard fractional derivative and application. International Journal of Nonlinear Sciences and Numerical Simulation, 2022, .	1.0	0