List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/884049/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrating an Islet-Based Biosensor in the Artificial Pancreas: In Silico Proof-of-Concept. IEEE Transactions on Biomedical Engineering, 2022, 69, 899-909.	2.5	4
2	Vertical Organic Electrochemical Transistors and Electronics for Low Amplitude Microâ€Organ Signals. Advanced Science, 2022, 9, e2105211.	5.6	22
3	Towards the Integration of an Islet-Based Biosensor in Closed-Loop Therapies for Patients With Type 1 Diabetes. Frontiers in Endocrinology, 2022, 13, 795225.	1.5	4
4	Dynamic Uni- and Multicellular Patterns Encode Biphasic Activity in Pancreatic Islets. Diabetes, 2021, 70, 878-888.	0.3	18
5	Design of Potassiumâ€5elective Mixed Ion/Electron Conducting Polymers. Macromolecular Rapid Communications, 2020, 41, e2000134.	2.0	12
6	Sodiumâ€lon Selectivity Study of a Crownâ€Etherâ€Functionalized PEDOT Analog. ChemElectroChem, 2020, 7, 2826-2830.	1.7	10
7	Design of Potassium‣elective Mixed Ion/Electron Conducting Polymers. Macromolecular Rapid Communications, 2020, 41, 2070030.	2.0	1
8	The glutamate receptor GluK2 contributes to the regulation of glucose homeostasis and its deterioration during aging. Molecular Metabolism, 2019, 30, 152-160.	3.0	10
9	The transmembrane domain of the SNARE protein VAMP2 is highly sensitive to its lipid environment. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 670-676.	1.4	8
10	Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nature Genetics, 2018, 50, 175-179.	9.4	122
11	Multimed: An Integrated, Multi-Application Platform for the Real-Time Recording and Sub-Millisecond Processing of Biosignals. Sensors, 2018, 18, 2099.	2.1	9
12	Bioelectronic organ-based sensor for microfluidic real-time analysis of the demand in insulin. Biosensors and Bioelectronics, 2018, 117, 253-259.	5.3	39
13	A Central Small Amino Acid in the VAMP2 Transmembrane Domain Regulates the Fusion Pore in Exocytosis. Scientific Reports, 2017, 7, 2835.	1.6	25
14	Fusion pore in exocytosis: More than an exit gate? A \hat{I}^2 -cell perspective. Cell Calcium, 2017, 68, 45-61.	1.1	19
15	A versatile electrode sorting module for MEAs: Implementation in a FPGA-based real-time system. , 2017, , .		1
16	Simultaneous monitoring of single cell and of micro-organ activity by PEDOT:PSS covered multi-electrode arrays. Materials Science and Engineering C, 2017, 81, 84-89.	3.8	28
17	Over-expression of Slc30a8/ZnT8 selectively in the mouse \hat{I}_{\pm} cell impairs glucagon release and responses to hypoglycemia. Nutrition and Metabolism, 2016, 13, 46.	1.3	20
18	Cell type-specific deletion in mice reveals roles for PAS kinase in insulin and glucagon production. Diabetologia, 2016, 59, 1938-1947.	2.9	10

#	Article	IF	CITATIONS
19	Slow potentials encode intercellular coupling and insulin demand in pancreatic beta cells. Diabetologia, 2015, 58, 1291-1299.	2.9	39
20	Multilevel control of glucose homeostasis by adenylyl cyclase 8. Diabetologia, 2015, 58, 749-757.	2.9	29
21	Calcium influx activates adenylyl cyclase 8 for sustained insulin secretion in rat pancreatic beta cells. Diabetologia, 2015, 58, 324-333.	2.9	40
22	Guiding pancreatic beta cells to target electrodes in a whole-cell biosensor for diabetes. Lab on A Chip, 2015, 15, 3880-3890.	3.1	28
23	Biosensors in Diabetes: How to get the most out of evolution and transpose it into a signal. IEEE Pulse, 2014, 5, 30-34.	0.1	12
24	Synaptotagmin 11 interacts with components of the RNAâ€induced silencing complex RISC in clonal pancreatic l²â€cells. FEBS Letters, 2014, 588, 2217-2222.	1.3	19
25	A novel bioelectronic glucose sensor to process distinct electrical activities of pancreatic beta-cells. , 2013, 2013, 172-5.		6
26	NeuroBetaMed: A re-configurable wavelet-based event detection circuit for in vitro biological signals. , 2012, , .		6
27	Nonâ€invasive longâ€ŧerm and realâ€ŧime analysis of endocrine cells on microâ€electrode arrays. Journal of Physiology, 2012, 590, 1085-1091.	1.3	27
28	Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells. Diabetologia, 2011, 54, 390-402.	2.9	69
29	A charged prominence in the linker domain of the cysteineâ€string protein Cspα mediates its regulated interaction with the calcium sensor synaptotagmin 9 during exocytosis. FASEB Journal, 2011, 25, 132-143.	0.2	25
30	Detection of Electrical Activity of Pancreatic Beta-cells Using Micro-electrode Arrays. , 2010, , .		6
31	Effect of monolayer lipid charges on the structure and orientation of protein VAMP1 at the air–water interface. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 928-937.	1.4	13
32	Exploring Functional β-Cell Heterogeneity In Vivo Using PSA-NCAM as a Specific Marker. PLoS ONE, 2009, 4, e5555.	1.1	39
33	Reversible transition between α-helix and β-sheet conformation of a transmembrane domain. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1722-1730.	1.4	28
34	Distinct roles of the C2A and the C2B domain of the vesicular Ca2+ sensor synaptotagmin 9 in endocrine β-cells. Biochemical Journal, 2007, 403, 483-492.	1.7	18
35	Glucotoxicity Inhibits Late Steps of Insulin Exocytosis. Endocrinology, 2007, 148, 1605-1614.	1.4	76
36	Cysteine-string protein isoform beta (Cspβ) is targeted to the trans-Golgi network as a non-palmitoylated CSP in clonal β-cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 109-119.	1.9	19

#	Article	IF	CITATIONS
37	The calcium-sensing protein synaptotagmin 7 is expressed on different endosomal compartments in endocrine, neuroendocrine cells or neurons but not on large dense core vesicles. Histochemistry and Cell Biology, 2007, 127, 625-632.	0.8	27
38	Synaptotagmin 8 is expressed both as a calcium-insensitive soluble and membrane protein in neurons, neuroendocrine and endocrine cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 73-81.	1.9	25
39	Splice variant 3, but not 2 of receptor protein-tyrosine phosphatase σ can mediate stimulation of insulin-secretion by α-latrotoxin. Journal of Cellular Biochemistry, 2006, 98, 1552-1559.	1.2	12
40	α-Latrotoxin Induces Exocytosis by Inhibition of Voltage-dependent K+ Channels and by Stimulation of L-type Ca2+ Channels via Latrophilin in β-Cells. Journal of Biological Chemistry, 2006, 281, 5522-5531.	1.6	27
41	The Variable C-Terminus of Cysteine String Proteins Modulates Exocytosis and Proteinâ^'Protein Interactionsâ€. Biochemistry, 2004, 43, 16212-16223.	1.2	32
42	PIPs and pools in insulin secretion. Trends in Endocrinology and Metabolism, 2003, 14, 297-299.	3.1	7
43	Cysteine String Protein Interacts with and Modulates the Maturation of the Cystic Fibrosis Transmembrane Conductance Regulator. Journal of Biological Chemistry, 2002, 277, 28948-28958.	1.6	54
44	A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and AÂ. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6336-6341.	3.3	545
45	Expression and localisation of synaptotagmin isoforms in endocrine β-cells: their function in insulin exocytosis. Journal of Cell Science, 2001, 114, 1709-1716.	1.2	83
46	Expression and localisation of synaptotagmin isoforms in endocrine beta-cells: their function in insulin exocytosis. Journal of Cell Science, 2001, 114, 1709-16.	1.2	72
47	Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. FEBS Journal, 1999, 259, 3-17.	0.2	304
48	Mutational analysis of cysteine-string protein function in insulin exocytosis. Journal of Cell Science, 1999, 112, 1345-1351.	1.2	47
49	Mutational analysis of cysteine-string protein function in insulin exocytosis. Journal of Cell Science, 1999, 112 (Pt 9), 1345-51.	1.2	14
50	Ca2+-independent insulin exocytosis induced by alpha -latrotoxin requires latrophilin, a G protein-coupled receptor. EMBO Journal, 1998, 17, 648-657.	3.5	76
51	G-protein βγ-binding domains regulate insulin exocytosis in clonal pancreatic β-cells. FEBS Letters, 1998, 424, 202-206.	1.3	14
52	Cysteine-string proteins regulate exocytosis of insulin independent from transmembrane ion fluxes. FEBS Letters, 1998, 437, 267-272.	1.3	52
53	Insulinoma Cells Contain an Isoform of Ca2+/Calmodulin-Dependent Protein Kinase II δAssociated with Insulin Secretion Vesicles*. Endocrinology, 1997, 138, 2577-2584.	1.4	42
54	Transient expression of botulinum neurotoxin C1 light chain differentially inhibits calcium and glucose induced insulin secretion in clonal β-cells. FEBS Letters, 1997, 419, 13-17.	1.3	47

#	Article	IF	CITATIONS
55	The first C2 domain of synaptotagmin is required for exocytosis of insulin from pancreatic β-cells: action of synaptotagmin at low micromolar calcium. EMBO Journal, 1997, 16, 5837-5846.	3.5	113
56	Insulinoma Cells Contain an Isoform of Ca2+/Calmodulin-Dependent Protein Kinase II Â Associated with Insulin Secretion Vesicles. Endocrinology, 1997, 138, 2577-2584.	1.4	12
57	Soluble <i>N</i> -ethylmaleimide-sensitive-factor attachment protein and <i>N</i> -ethylmaleimide-insensitive factors are required for Ca2+-stimulated exocytosis of insulin. Biochemical Journal, 1996, 314, 199-203.	1.7	75
58	Expression, localization and functional role of small GTPases of the Rab3 family in insulin-secreting cells. Journal of Cell Science, 1996, 109, 2265-2273.	1.2	111
59	Direct control of exocytosis by receptor-mediated activation of the heterotrimeric GTPases Gi and G(o) or by the expression of their active G alpha subunits EMBO Journal, 1995, 14, 3635-3644.	3.5	122
60	VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2+)-but not for GTP gamma S-induced insulin secretion EMBO Journal, 1995, 14, 2723-2730.	3.5	201
61	SNAP-25 is expressed in islets of Langerhans and is involved in insulin release Journal of Cell Biology, 1995, 128, 1019-1028.	2.3	243
62	Direct control of exocytosis by receptor-mediated activation of the heterotrimeric GTPases Gi and G(o) or by the expression of their active G alpha subunits. EMBO Journal, 1995, 14, 3635-44.	3.5	33
63	VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2+)-but not for GTP gamma S-induced insulin secretion. EMBO Journal, 1995, 14, 2723-30.	3.5	65
64	Activity-dependent mobilization of the adhesion molecule polysialic NCAM to the cell surface of neurons and endocrine cells EMBO Journal, 1994, 13, 5284-5292.	3.5	143
65	Synthesis and characterization of anti-idiotypic anti-T4 antibodies. European Journal of Endocrinology, 1994, 130, 107-112.	1.9	1
66	A game plan for exocytosis. Trends in Cell Biology, 1994, 4, 339-341.	3.6	6
67	Regulation of cytosolic calcium and insulin secretion by galanin and ATP receptors: interactions of pertussis-toxin-sensitive and -insensitive signalling pathways. Biochemical Journal, 1994, 303, 885-891.	1.7	10
68	Activity-dependent mobilization of the adhesion molecule polysialic NCAM to the cell surface of neurons and endocrine cells. EMBO Journal, 1994, 13, 5284-92.	3.5	43
69	Conserved transducer coupling but different effector linkage upon expression of the myeloid fMet-Leu-Phe receptor in insulin secreting cells EMBO Journal, 1993, 12, 2671-2679.	3.5	22
70	Conserved transducer coupling but different effector linkage upon expression of the myeloid fMet-Leu-Phe receptor in insulin secreting cells. EMBO Journal, 1993, 12, 2671-9.	3.5	6
71	Guanine Nucleotide-Binding Proteins and Their Coupling to Opioid Receptors. , 1991, , 121-140.		0
72	Distribution of the α-subunit of the Guanine Nucleotide-binding Protein G _{i2} and its Comparison to Gα _o . Journal of Receptors and Signal Transduction, 1989, 9, 313-329.	1.2	7

#	Article	IF	CITATIONS
73	Purification and characterization of subforms of the guanine-nucleotide-binding proteins Galphai and Galphao. FEBS Journal, 1989, 183, 687-692.	0.2	23
74	Direct modulation of voltage-dependent calcium channels by muscarinic activation of a pertussis toxin-sensitive G-protein in hippocampal neurons. Pflugers Archiv European Journal of Physiology, 1989, 415, 255-261.	1.3	84
75	Chronic Exposure of NG 108-15 Cells to Opiate Agonists Does Not Alter the Amount of the Guanine Nucleotide-Binding Proteins Giand GO. Journal of Neurochemistry, 1989, 53, 1500-1506.	2.1	14
76	Chronic opiate receptor activation in vivo alters the level of g-protein subunits in guinea-pig myenteric plexus. Neuroscience, 1989, 32, 503-510.	1.1	24
77	Pertussis toxin abolishes the antinociception mediated by opioid receptors in rat spinal cord. European Journal of Pharmacology, 1987, 144, 91-95.	1.7	47
78	Antisera against the 3–17 sequence of rat Gαi recognize only a 40 kDa G-protein in brain. Biochemical and Biophysical Research Communications, 1987, 148, 838-848.	1.0	14
79	Further functional in vitro comparison of pre- and postsynaptic dopamine receptors in the rabbit caudate nucleus. Naunyn-Schmiedeberg's Archives of Pharmacology, 1983, 323, 298-306.	1.4	110