Anjana Dissanayake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8840339/publications.pdf

Version: 2024-02-01

18	153	7	8
papers	citations	h-index	g-index
18	18	18	134
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A 2.5 ppm/ \hat{A}° C 1.05-MHz Relaxation Oscillator With Dynamic Frequency-Error Compensation and Fast Start-Up Time. IEEE Journal of Solid-State Circuits, 2019, 54, 1952-1959.	5.4	20
2	A 2.4GHz, \hat{a}^{102} dBm-sensitivity, 25kb/s, 0.466mW interference resistant BFSK multi-channel sliding-IF ULP receiver., 2017, , .		14
3	A 2.4 GHz-91.5 dBm Sensitivity Within-Packet Duty-Cycled Wake-Up Receiver. IEEE Journal of Solid-State Circuits, 2022, 57, 917-931.	5.4	14
4	A 45- <inline-formula> <tex-math notation="LaTeX">\$mu\$ </tex-math> </inline-formula> W, 162.1-dBc/Hz FoM, 490-MHz Two-Stage Differential Ring VCO Without a Cross-Coupled Latch. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 1579-1583.	3.0	13
5	A -106dBm 33nW Bit-Level Duty-Cycled Tuned RF Wake-up Receiver. , 2019, , .		13
6	A 0.6V 785-nW Multimodal Sensor Interface IC for Ozone Pollutant Sensing and Correlated Cardiovascular Disease Monitoring. IEEE Journal of Solid-State Circuits, 2021, 56, 1058-1070.	5. 4	13
7	A 64 ÂμW, 23 dB gain, 8 dB NF, 2.4 GHz RF front-end for ultra-low power Internet-of-Things transceivers. , 2017, , .		11
8	The Evolution of Channelization Receiver Architecture: Principles and Design Challenges. IEEE Access, 2017, 5, 25385-25395.	4.2	11
9	A Highly Reconfigurable Bit-Level Duty-Cycled TRF Receiver Achieving â^'106-dBm Sensitivity and 33-nW Average Power Consumption. IEEE Solid-State Circuits Letters, 2019, 2, 309-312.	2.0	11
10	A 0.6-V 44.6-f]/Cycle Energy-Optimized Frequency-Locked Loop in 65-nm CMOS With 20.3-ppm/°C Stability. IEEE Solid-State Circuits Letters, 2019, 2, 223-226.	2.0	9
11	A Multichannel, MEMS-Less â^'99dBm 260nW Bit-Level Duty Cycled Wakeup Receiver. , 2020, , .		9
12	A 184-nW, â^78.3-dBm Sensitivity Antenna-Coupled Supply, Temperature, and Interference-Robust Wake-Up Receiver at 4.9 GHz. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 744-757.	4.6	7
13	A 785nW Multimodal (V/I/R) Sensor Interface IC for Ozone Pollutant Sensing and Correlated Cardiovascular Disease Monitoring. , 2020, , .		2
14	21.5 An Integrated 2.4GHz -91.5dBm-Sensitivity Within-Packet Duty-Cycled Wake-Up Receiver Achieving $2\hat{l}\frac{1}{4}$ W at 100ms Latency., 2021, , .		2
15	A- 108 dBm Sensitivity, - 28 dB SIR, 130 nW to $41 \hat{A}\mu$ W, Digitally Reconfigurable Bit-Level Duty-Cycled Wakeup and Data Receiver. , 2020 , , .		2
16	A 2.5 ppm/ \hat{A} °C 1.05 MHz Relaxation Oscillator with Dynamic Frequency-Error Compensation and 8 $\hat{A}\mu$ s Start-up Time. , 2018, , .		1
17	Enabling Channelizing Filters for High Impedance Nodes with Temperature Compensated Lamb-Wave Resonators. , 2020, , .		1
18	Stacked Transconductance Boosting for Ultra-Low Power 2.4GHz RF Front-End Design. , 2021, , .		0