Yoshitsugu Kojima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8840296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Materials for hydrogen-based energy storage – past, recent progress and future outlook. Journal of Alloys and Compounds, 2020, 827, 153548.	2.8	518
2	Hydrogen storage materials for hydrogen and energy carriers. International Journal of Hydrogen Energy, 2019, 44, 18179-18192.	3.8	261
3	Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress. International Journal of Hydrogen Energy, 2019, 44, 7746-7767.	3.8	166
4	Development of 10 kW-scale hydrogen generator using chemical hydride. Journal of Power Sources, 2004, 125, 22-26.	4.0	161
5	Development of vanadium based hydrogen storage material: A review. Renewable and Sustainable Energy Reviews, 2017, 72, 791-800.	8.2	156
6	IR characterizations of lithium imide and amide. Journal of Alloys and Compounds, 2005, 395, 236-239.	2.8	154
7	Hydrogen generation by hydrolysis reaction of lithium borohydride. International Journal of Hydrogen Energy, 2004, 29, 1213-1217.	3.8	135
8	Hydrogen absorption of catalyzed magnesium below room temperature. International Journal of Hydrogen Energy, 2013, 38, 13728-13733.	3.8	112
9	Development of metal hydride with high dissociation pressure. Journal of Alloys and Compounds, 2006, 419, 256-261.	2.8	96
10	Ammonia, a Switch for Controlling High Ionic Conductivity in Lithium Borohydride Ammoniates. Joule, 2018, 2, 1522-1533.	11.7	87
11	Magnesium-based nano-composite materials for hydrogen storage. Journal of Alloys and Compounds, 2006, 424, 294-298.	2.8	84
12	Dehydriding reactions of mixed complex hydrides. Journal of Power Sources, 2006, 155, 447-455.	4.0	81
13	Hydrogen adsorption and desorption by carbon materials. Journal of Alloys and Compounds, 2006, 421, 204-208.	2.8	80
14	Review on Ammonia Absorption Materials: Metal Hydrides, Halides, and Borohydrides. ACS Applied Energy Materials, 2018, 1, 232-242.	2.5	80
15	Highly purified hydrogen production from ammonia for PEM fuel cell. International Journal of Hydrogen Energy, 2018, 43, 14486-14492.	3.8	76
16	Thermal analysis on the Li–Mg–B–H systems. Journal of Alloys and Compounds, 2007, 446-447, 306-309.	2.8	74
17	Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO2. Journal of Power Sources, 2006, 155, 325-328.	4.0	70
18	Structure and catalytic properties of Ni/MWCNTs and Ni/AC catalysts for hydrogen production via ammonia decomposition. International Journal of Hydrogen Energy, 2014, 39, 277-287.	3.8	66

#	Article	IF	CITATIONS
19	How does TiF ₄ affect the decomposition of MgH ₂ and its complex variants? – An XPS investigation. Journal of Materials Chemistry A, 2017, 5, 15543-15551.	5.2	65
20	X-ray Absorption Spectroscopic Study on Valence State and Local Atomic Structure of Transition Metal Oxides Doped in MgH ₂ . Journal of Physical Chemistry C, 2009, 113, 13450-13455.	1.5	64
21	Metal hydride-based materials towards high performance negative electrodes for all-solid-state lithium-ion batteries. Chemical Communications, 2015, 51, 9773-9776.	2.2	64
22	Hydrogen Absorption and Desorption by the Liâ^'Alâ^'Nâ^'H System. Journal of Physical Chemistry B, 2006, 110, 9632-9636.	1.2	63
23	Surface modification of MgH2 by ZrCl4 to tailor the reversible hydrogen storage performance. International Journal of Hydrogen Energy, 2017, 42, 6152-6159.	3.8	61
24	Recyclable hydrogen storage system composed of ammonia and alkali metal hydride. International Journal of Hydrogen Energy, 2009, 34, 9760-9764.	3.8	59
25	Comparative Study of Structural Changes in NH ₃ BH ₃ , LiNH ₂ BH ₃ , and KNH ₂ BH ₃ During Dehydrogenation Process. Journal of Physical Chemistry C, 2012, 116, 5957-5964.	1.5	57
26	Enhancement of hydrogen desorption kinetics in magnesium hydride by doping with lithium metatitanate. Journal of Alloys and Compounds, 2017, 711, 400-405.	2.8	57
27	Hydrogen storage of metal nitrides by a mechanochemical reaction. Journal of Power Sources, 2006, 159, 81-87.	4.0	56
28	Hydrogen generation by electrolysis of liquid ammonia. Chemical Communications, 2010, 46, 7775.	2.2	55
29	Ammonia as a hydrogen energy carrier. International Journal of Hydrogen Energy, 2022, 47, 22832-22839.	3.8	50
30	Superior Hydrogen Exchange Effect in the MgH ₂ â^'LiBH ₄ System. Journal of Physical Chemistry C, 2010, 114, 13132-13135.	1.5	48
31	Solid state NMR study on the thermal decomposition pathway of sodium amidoborane NaNH2BH3. Journal of Materials Chemistry, 2011, 21, 2609.	6.7	48
32	Hydrogen release of catalyzed lithium aluminum hydride by a mechanochemical reaction. Journal of Alloys and Compounds, 2008, 462, 275-278.	2.8	47
33	Anode properties of magnesium hydride catalyzed with niobium oxide for an all solid-state lithium-ion battery. Chemical Communications, 2013, 49, 7174.	2.2	47
34	High compressed hydrogen production via direct electrolysis of liquid ammonia. International Journal of Hydrogen Energy, 2016, 41, 14529-14534.	3.8	46
35	Thermal decomposition of alkaline-earth metal hydride and ammonia borane composites. International Journal of Hydrogen Energy, 2010, 35, 12405-12409.	3.8	45
36	Bulk-Type All-Solid-State Lithium-Ion Batteries: Remarkable Performances of a Carbon Nanofiber-Supported MgH ₂ Composite Electrode. ACS Applied Materials & Interfaces, 2017, 9, 2261-2266.	4.0	45

#	Article	IF	CITATIONS
37	Hydrogen storage of metal nitride by a mechanochemical reaction. Chemical Communications, 2004, , 2210.	2.2	41
38	Electron Spin Resonance Investigation of Hydrogen Absorption in Ball-Milled Graphite. Journal of Physical Chemistry C, 2009, 113, 5409-5416.	1.5	41
39	Molecular hydrogen carrier with activated nanohydride and ammonia. Journal of Materials Research, 2009, 24, 2185-2190.	1.2	41
40	Tuning catalytic performances of cobalt catalysts for clean hydrogen generation via variation of the type of carbon support and catalyst post-treatment temperature. International Journal of Hydrogen Energy, 2014, 39, 17573-17582.	3.8	40
41	Study of cyclic performance of V-Ti-Cr alloys employed for hydrogen compressor. International Journal of Hydrogen Energy, 2018, 43, 2881-2889.	3.8	40
42	Phase and morphology evolution study of ball milled Mg–Co hydrogen storage alloys. International Journal of Hydrogen Energy, 2013, 38, 7070-7076.	3.8	39
43	Thermodynamics and kinetics of nano-engineered Mg-MgH 2 system for reversible hydrogen storage application. Thermochimica Acta, 2017, 652, 103-108.	1.2	38
44	Study on the thermal decomposition of NaBH 4 catalyzed by ZrCl 4. International Journal of Hydrogen Energy, 2017, 42, 22432-22437.	3.8	37
45	Hybrid nickel-metal hydride/hydrogen battery. International Journal of Hydrogen Energy, 2019, 44, 4263-4270.	3.8	36
46	Correlation between kinetics and chemical bonding state of catalyst surface in catalyzed magnesium hydride. International Journal of Hydrogen Energy, 2011, 36, 12319-12323.	3.8	34
47	Ammonia storage materials for nitrogen recycling hydrogen and energy carriers. International Journal of Hydrogen Energy, 2020, 45, 10233-10246.	3.8	34
48	Activation of Ammonia Borane Hybridized with Alkalineâ^'Metal Hydrides: A Low-Temperature and High-Purity Hydrogen Generation Material. Journal of Physical Chemistry C, 2010, 114, 14662-14664.	1.5	33
49	Thermodynamics on Ammonia Absorption of Metal Halides and Borohydrides. Journal of Physical Chemistry C, 2014, 118, 18412-18416.	1.5	32
50	Activation on Ammonia Absorbing Reaction for Magnesium Chloride. Journal of Physical Chemistry C, 2015, 119, 26296-26302.	1.5	32
51	Hydrogen adsorption and desorption by potassium-doped superactivated carbon. Applied Physics Letters, 2004, 84, 4113-4115.	1.5	31
52	Electrochemical Performance of Titanium Hydride for Bulk-Type All-Solid-State Lithium-Ion Batteries. Materials Transactions, 2016, 57, 755-757.	0.4	31
53	Improvement of hydrogen desorption kinetics in the LiH–NH3 system by addition of KH. Chemical Communications, 2011, 47, 12227.	2.2	30
54	A new synthesis route of ammonia production through hydrolysis of metal – Nitrides. International Journal of Hydrogen Energy, 2017, 42, 24897-24903.	3.8	30

#	Article	IF	CITATIONS
55	Hydrogen storage properties of lithium silicon alloy synthesized by mechanical alloying. Journal of Power Sources, 2011, 196, 504-507.	4.0	29
56	Dehydrogenation process of AlH3 observed by TEM. Journal of Alloys and Compounds, 2013, 580, S163-S166.	2.8	28
57	Destabilization of LiH by Li Insertion into Ge. Journal of Physical Chemistry C, 2013, 117, 5650-5657.	1.5	28
58	Low-temperature water-splitting by sodium redox reaction. International Journal of Hydrogen Energy, 2012, 37, 17709-17714.	3.8	27
59	Direct formation of LiAlH4 by a mechanochemical reaction. Journal of Alloys and Compounds, 2007, 441, 189-191.	2.8	26
60	Synthesis and characterization of lithium–carbon compounds for hydrogen storage. Journal of Alloys and Compounds, 2011, 509, 719-723.	2.8	26
61	Thermodynamic properties of metal amides determined by ammonia pressure-composition isotherms. Journal of Chemical Thermodynamics, 2010, 42, 140-143.	1.0	25
62	Evaluation of enthalpy change due to hydrogen desorption for lithium amide/imide system by differential scanning calorimetry. Thermochimica Acta, 2008, 468, 35-38.	1.2	24
63	The reaction process of hydrogen absorption and desorption on the nanocomposite of hydrogenated graphite and lithium hydride. Nanotechnology, 2009, 20, 204021.	1.3	24
64	Formation of NaCl-Type Monodeuteride LaD by the Disproportionation Reaction of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>LaD</mml:mi><mml:mn>2</mml:mn></mml:msub>. Physical Review Letters, 2012, 108, 205501.</mml:math 	2.9	24
65	Improved hydrogen release from magnesium borohydride by ZrCl4 additive. International Journal of Hydrogen Energy, 2017, 42, 22342-22347.	3.8	24
66	Micro-alloyed Mg2Ni for better performance as negative electrode of Ni-MH battery and hydrogen storage. International Journal of Hydrogen Energy, 2017, 42, 5220-5226.	3.8	23
67	Doping effect of Nb species on hydrogen desorption properties of AlH3. Journal of Alloys and Compounds, 2018, 734, 55-59.	2.8	23
68	Characterization of titanium based catalysts in the Li-N-H hydrogen storage system by X-ray absorption spectroscopy. Journal of Alloys and Compounds, 2007, 446-447, 360-362.	2.8	22
69	Thermodynamic properties of lithium amide under hydrogen pressure determined by Raman spectroscopy. Journal of Applied Physics, 2009, 105, .	1.1	22
70	Hydrogen desorption reactions of Li–N–H hydrogen storage system: Estimation of activation free energy. Journal of Alloys and Compounds, 2007, 439, 358-362.	2.8	21
71	Electrochemical charge and discharge properties for the formation of magnesium and aluminum hydrides. Journal of Alloys and Compounds, 2011, 509, S584-S587.	2.8	21
72	Nano-engineered Mg–MgH2 system for solar thermal energy storage. Solar Energy, 2017, 150, 532-537.	2.9	21

Yoshitsugu Kojima

#	Article	IF	CITATIONS
73	Hydrogen desorption processes in Li–Mg–N–H systems. Journal of Physics and Chemistry of Solids, 2008, 69, 2234-2236.	1.9	20
74	Synthesis and characterization of magnesium–carbon compounds for hydrogen storage. Carbon, 2013, 56, 50-55.	5.4	20
75	Development of Mg Li B based advanced material for onboard hydrogen storage solution. International Journal of Hydrogen Energy, 2017, 42, 3963-3970.	3.8	20
76	Catalytic effect of ATiO3 (A = Sr, Ba) on ammonia decomposition during mechanical milling. Chemical Communications, 2010, 46, 3982.	2.2	19
77	Liquid ammonia electrolysis by platinum electrodes. Journal of Alloys and Compounds, 2011, 509, S891-S894.	2.8	19
78	Anode properties of Al2O3-added MgH2 for all-solid-state lithium-ion batteries. Journal of Solid State Electrochemistry, 2015, 19, 3639-3644.	1.2	19
79	Catalytic hydrolysis of sodium borohydride on Co catalysts. International Journal of Energy Research, 2016, 40, 2078-2090.	2.2	19
80	Characterization of hydrogen absorption/desorption states on lithium-carbon-hydrogen system by neutron diffraction. Journal of Applied Physics, 2008, 104, 053511.	1.1	18
81	Nitrogen Dissociation via Reaction with Lithium Alloys. ACS Omega, 2017, 2, 1081-1088.	1.6	18
82	Hydrogen desorption properties of Li–BN–H system synthesized by mechanical milling. International Journal of Hydrogen Energy, 2008, 33, 3128-3131.	3.8	17
83	Improvement of reaction kinetics by metal chloride on ammonia and lithium hydride system. International Journal of Hydrogen Energy, 2012, 37, 16025-16030.	3.8	17
84	Synergic effect of ZrCl4 on thermal dehydrogenation kinetics of KBH4. Journal of Alloys and Compounds, 2017, 718, 134-138.	2.8	17
85	Anomalous hydrogen absorption on non-stoichiometric iron-carbon compound. Journal of Alloys and Compounds, 2010, 507, 547-550.	2.8	16
86	Ammonia Synthesis via Non-Equilibrium Reaction of Lithium Nitride in Hydrogen Flow Condition. Materials Transactions, 2015, 56, 410-414.	0.4	16
87	Catalytic effect of bis (cyclopentadienyl) nickel II on the improvement of the hydrogenation-dehydrogenation of Mg-MgH2 system. International Journal of Hydrogen Energy, 2017, 42, 17178-17183.	3.8	16
88	Catalytic Effect of Tiâ^'Liâ^'N Compounds in the Liâ^'Nâ^'H System on Hydrogen Desorption Properties. Journal of Physical Chemistry C, 2011, 115, 589-593.	1.5	15
89	Synthesis of nickel nanoparticles with excellent thermal stability in micropores of zeolite. International Journal of Hydrogen Energy, 2013, 38, 13579-13586.	3.8	15
90	Correlation between electrochemical behavior and hydrogen storage properties of Li–Sn system. Journal of Alloys and Compounds, 2013, 580, S211-S215.	2.8	15

#	Article	IF	CITATIONS
91	Catalytic modification in dehydrogenation properties of KSiH ₃ . Physical Chemistry Chemical Physics, 2014, 16, 26163-26167.	1.3	15
92	Tailoring the Thermodynamics and Kinetics of Mg–Li Alloy for a MgH ₂ â€Based Anode for Lithiumâ€lon Batteries. Energy Technology, 2017, 5, 1546-1551.	1.8	15
93	Quantity of NH3 desorption from the Li–N–H hydrogen storage system examined by Fourier transform infrared spectroscopy. Journal of Alloys and Compounds, 2007, 446-447, 342-344.	2.8	14
94	Reaction between magnesium ammine complex compound and lithium hydride. International Journal of Hydrogen Energy, 2010, 35, 2058-2062.	3.8	13
95	Structural and thermal gas desorption properties of metal aluminum amides. Journal of Alloys and Compounds, 2010, 506, 297-301.	2.8	13
96	Ammonia Desorption Property and Structural Changes of LiAl(NH ₂) ₄ on Thermal Decomposition. Journal of Physical Chemistry C, 2011, 115, 10284-10291.	1.5	13
97	Proton-based solid acids for ammonia absorption in ammonia water. International Journal of Hydrogen Energy, 2020, 45, 22189-22194.	3.8	13
98	Compressed hydrogen production via reaction between liquid ammonia and alkali metal hydride. International Journal of Hydrogen Energy, 2011, 36, 8217-8220.	3.8	12
99	Identifying catalyst in Li-N-H system by x-ray absorption spectroscopy. Applied Physics Letters, 2011, 99, .	1.5	12
100	Thermal decomposition of sodium amide. International Journal of Hydrogen Energy, 2017, 42, 5213-5219.	3.8	12
101	Local Structural Analysis on Decomposition Process of LiAl(ND ₂) ₄ . Materials Transactions, 2014, 55, 1129-1133.	0.4	11
102	Catalysis of Lithium Chloride and Alkali Metal Borohydrides on Hydrogen Generation of Ammonia and Lithium Hydride System. Journal of Physical Chemistry C, 2015, 119, 19922-19927.	1.5	10
103	Thermodynamic and Spectroscopic Analyses of Zirconium Phosphate-Absorbed Ammonia. Journal of Physical Chemistry C, 2021, 125, 3758-3763.	1.5	10
104	Crystal structure and dynamics of Mg(ND3)6Cl2. Physical Chemistry Chemical Physics, 2011, 13, 7644.	1.3	9
105	First-Principles Calculations of Potassium Amidoborane KNH ₂ BH ₃ : Structure and ³⁹ K NMR Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 20666-20672.	1.5	9
106	Metal aluminum amides for hydrogen storage – Crystal structure studies. International Journal of Hydrogen Energy, 2015, 40, 16938-16947.	3.8	9
107	Tailoring the absorption–desorption properties of KSiH3 compound using nano-metals (Ni, Co, Nb) as catalyst. Journal of Alloys and Compounds, 2015, 645, S144-S147.	2.8	9
108	Remarkably improved dehydrogenation of ZrCl4 doped NaAlH4 for hydrogen storage application. International Journal of Hydrogen Energy, 2017, 42, 15299-15307.	3.8	9

#	Article	IF	CITATIONS
109	Investigation on hydrogen dissociation pressure, heat of formation and strain energy of metal hydrides. Journal of Alloys and Compounds, 2020, 840, 155686.	2.8	9
110	Investigation on standard entropy change of metal hydrides and work function of metals. International Journal of Hydrogen Energy, 2021, 46, 2306-2311.	3.8	9
111	Gas Emission Properties of the MgH <i>_x</i> -Zn(BH ₄) ₂ Systems. Materials Transactions, 2007, 48, 556-559.	0.4	8
112	H2 desorption from LiH cluster and NH3 molecule studied by ab initio molecular dynamics simulation. Computational and Theoretical Chemistry, 2010, 944, 137-145.	1.5	8
113	Raman Scattering Study of Hydrogen Storage Material LiNH ₂ . Journal of the Physical Society of Japan, 2012, 81, 094603.	0.7	8
114	Concentration–composition-isotherm for the ammonia absorption process of zirconium phosphate. RSC Advances, 2020, 10, 20882-20885.	1.7	8
115	Hydrogen Desorption Reaction between Hydrogen-Containing Functional Groups and Lithium Hydride. Journal of Physical Chemistry C, 2010, 114, 8668-8674.	1.5	7
116	Electronic structure of lithium amide. Physical Review B, 2011, 83, .	1.1	7
117	Ammonia suppression during decomposition of sodium amide by the addition of metal hydride. International Journal of Hydrogen Energy, 2017, 42, 22388-22394.	3.8	7
118	Tailoring the hydrogen absorption desorption's dynamics of Mg MgH2 system by titanium suboxide doping. International Journal of Hydrogen Energy, 2017, 42, 21841-21848.	3.8	7
119	Lithium hydrazide as a potential compound for hydrogen storage. International Journal of Hydrogen Energy, 2012, 37, 5750-5753.	3.8	6
120	Kinetic Modification on Hydrogen Desorption of Lithium Hydride and Magnesium Amide System. Materials, 2015, 8, 3896-3909.	1.3	6
121	Thermodynamics and kinetics of hydrogen absorption–desorption of vanadium synthesized by aluminothermy. Journal of Thermal Analysis and Calorimetry, 2017, 130, 721-726.	2.0	6
122	Temperature rise of LaNi5-based alloys by hydrogen adsorption. Chemical Communications, 2021, 57, 9374-9377.	2.2	6
123	Thermodynamic analysis of ammonia storage materials. International Journal of Hydrogen Energy, 2021, 46, 11756-11760.	3.8	6
124	The anharmonic vibration of Li in lithium amide. Applied Physics Letters, 2012, 100, 151911.	1.5	5
125	Hydrogen production via thermochemical water-splitting by lithium redox reaction. Journal of Alloys and Compounds, 2013, 580, S410-S413.	2.8	5
126	Isotopic effect on the non-isothermal dehydrogenation kinetics of lithium alanates. Journal of Nuclear Materials, 2017, 492, 183-188.	1.3	5

Yoshitsugu Kojima

#	Article	IF	CITATIONS
127	Eutectic Phenomenon of LiNH2-KH Composite in MH-NH3 Hydrogen Storage System. Molecules, 2019, 24, 1348.	1.7	5
128	A new complex alkali metal aluminium amide borohydride, Li ₂ Al(ND ₂) ₄ BH ₄ : synthesis, thermal analysis and crystal structure. RSC Advances, 2016, 6, 28761-28766.	1.7	4
129	The catalytic effect of ZrCl4 on thermal dehydrogenation LiAlD4. International Journal of Hydrogen Energy, 2020, 45, 14413-14417.	3.8	4
130	Microscopic characterization of metal-carbon-hydrogen composites (metal = Li, Mg). Journal of Applied Physics, 2013, 114, 093509.	1.1	3
131	Hydrogen Ab/Desorption of LiH-KH Composite and Ammonia System. Materials Transactions, 2016, 57, 1215-1219.	0.4	3
132	Development of Ca–Mg–H2–ZrCl4 composite for hydrogen storage applications. International Journal of Hydrogen Energy, 2021, 46, 34362-34368.	3.8	3
133	Cluster size effect on hydrogen desorption process from LinHn–NH3 hydrogen storage system. Journal of Alloys and Compounds, 2011, 509, S728-S731.	2.8	2
134	<i>Ab initio</i> study on the hydrogen desorption from \$m {MHext{–}NH}_3\$MH–NH3 (M = Li, Na, K) hydrogen storage systems. Journal of Chemical Physics, 2011, 134, 124515.	1.2	2
135	Improved hydrogen desorption from lithium hydrazide by alkali metal hydride. Journal of Alloys and Compounds, 2013, 580, S320-S323.	2.8	2
136	Correlation between particle size and hydrogen generation properties on ammonia and lithium hydride system. International Journal of Hydrogen Energy, 2015, 40, 14911-14915.	3.8	2
137	Entropy differences between hydrides and other elements. Chemical Communications, 2021, 57, 3461-3463.	2.2	2
138	Variable temperature neutron diffraction studies of single crystals of LiND2. International Journal of Hydrogen Energy, 2011, 36, 7909-7913.	3.8	1
139	Catalytic Effect of Niobium Oxide on Hydrogen Absorption and Desorption Process for Magnesium. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 636-640.	0.2	1
140	Synthesis of Calcium Borohydride by Milling Hydrogenation of Hydride and Boride. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 609-614.	0.2	1
141	Cation/anion dependence of metal ammine borohydrides/chlorides studied by ab initio calculations. Computational and Theoretical Chemistry, 2014, 1039, 71-74.	1.1	1
142	Assessment of hydrogen storage property of Ca Mg B H system using NMR and thermal analysis techniques. International Journal of Hydrogen Energy, 2017, 42, 26007-26012.	3.8	1
143	Synergetic NH ₃ absorption properties of the NaBH ₄ –LiBH ₄ mixed system. Chemical Communications, 2021, 57, 6003-6006.	2.2	1
144	Hydrogen storage properties in a composite of lithium hydride and boron nitride with hydrocarbon groups. Journal of Alloys and Compounds, 2007, 446-447, 39-43.	2.8	0

#	Article	IF	CITATIONS
145	Microstructure and hydrogen desorption characteristics of hydrogenated ScH2–MBn (MÂ=ÂMg and Ca) systems synthesized by mechanical milling. International Journal of Hydrogen Energy, 2013, 38, 6744-6749.	3.8	0
146	Chemical Hydrogen Storage of Carbon Material. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 552-558.	0.2	0
147	Investigation of Reaction Mechanism in Li2NH Hydrogen Storage System by TEM. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 571-574.	0.2	0
148	Ammonia Synthesis via Non-Equilibrium Reaction of Lithium Nitride in Hydrogen Flow Condition. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 580-584.	0.2	0
149	Anomalous Large Capacitances of Porous Carbons based on Protium Adsorption. Chemical Communications, 2022, , .	2.2	0
150	Regeneration Process of Ammonia-Absorbed Zirconium Phosphate to Zirconium Phosphate. ACS Omega, 2022, 7, 20881-20885.	1.6	0