Trevor S Barss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8840188/publications.pdf

Version: 2024-02-01

TDEVOD S RADSS

#	Article	lF	CITATIONS
1	Neuromechanical interactions between the limbs during human locomotion: an evolutionary perspective with translation to rehabilitation. Experimental Brain Research, 2016, 234, 3059-3081.	1.5	83
2	Cutaneous stimulation of discrete regions of the sole during locomotion produces "sensory steering―of the foot. BMC Sports Science, Medicine and Rehabilitation, 2014, 6, 33.	1.7	64
3	Changes in Functional Magnetic Resonance Imaging Cortical Activation with Cross Education to an Immobilized Limb. Medicine and Science in Sports and Exercise, 2011, 43, 1394-1405.	0.4	59
4	Effects of cross-education on the muscle after a period of unilateral limb immobilization using a shoulder sling and swathe. Journal of Applied Physiology, 2010, 109, 1887-1894.	2.5	57
5	Rhythmic arm cycling training improves walking and neurophysiological integrity in chronic stroke: the arms can give legs a helping hand in rehabilitation. Journal of Neurophysiology, 2018, 119, 1095-1112.	1.8	57
6	Utilizing Physiological Principles of Motor Unit Recruitment to Reduce Fatigability of Electrically-Evoked Contractions: A Narrative Review. Archives of Physical Medicine and Rehabilitation, 2018, 99, 779-791.	0.9	36
7	Exploiting Interlimb Arm and Leg Connections for Walking Rehabilitation: A Training Intervention in Stroke. Neural Plasticity, 2016, 2016, 1-19.	2.2	31
8	Neural Mechanisms Influencing Interlimb Coordination during Locomotion in Humans: Presynaptic Modulation of Forearm H-Reflexes during Leg Cycling. PLoS ONE, 2013, 8, e76313.	2.5	28
9	Long-Term Plasticity in Reflex Excitability Induced by Five Weeks of Arm and Leg Cycling Training after Stroke. Brain Sciences, 2016, 6, 54.	2.3	24
10	Effects of Training With Free Weights Versus Machines on Muscle Mass, Strength, Free Testosterone, and Free Cortisol Levels. Journal of Strength and Conditioning Research, 2020, 34, 1851-1859.	2.1	23
11	Effects of a compression garment on sensory feedback transmission in the human upper limb. Journal of Neurophysiology, 2018, 120, 186-195.	1.8	22
12	Amplification of interlimb reflexes evoked by stimulating the hand simultaneously with conditioning from the foot during locomotion. BMC Neuroscience, 2013, 14, 28.	1.9	21
13	Metabolism and performance during extended high-intensity intermittent exercise after consumption of low- and high-glycaemic index pre-exercise meals. British Journal of Nutrition, 2012, 108, S81-S90.	2.3	20
14	Transcutaneous spinal cord stimulation of the cervical cord modulates lumbar networks. Journal of Neurophysiology, 2020, 123, 158-166.	1.8	19
15	Time course of interlimb strength transfer after unilateral handgrip training. Journal of Applied Physiology, 2018, 125, 1594-1608.	2.5	18
16	Preservation of common rhythmic locomotor control despite weakened supraspinal regulation after stroke. Frontiers in Integrative Neuroscience, 2014, 8, 95.	2.1	14
17	Simultaneous Cervical and Lumbar Spinal Cord Stimulation Induces Facilitation of Both Spinal and Corticospinal Circuitry in Humans. Frontiers in Neuroscience, 2021, 15, 615103.	2.8	13
18	Cross-education of strength and skill: an old idea with applications in the aging nervous system. Yale Journal of Biology and Medicine, 2016, 89, 81-6.	0.2	12

TREVOR S BARSS

#	Article	IF	CITATIONS
19	Time Course for Recovery of Peak Aerobic Power After Blood Donation. Journal of Strength and Conditioning Research, 2011, 25, 3035-3038.	2.1	11
20	Regionally distinct cutaneous afferent populations contribute to reflex modulation evoked by stimulation of the tibial nerve during walking. Journal of Neurophysiology, 2016, 116, 183-190.	1.8	8
21	Beyond the Bottom of the Foot. Medicine and Science in Sports and Exercise, 2017, 49, 2439-2450.	0.4	8
22	Neural Substrates of Transcutaneous Spinal Cord Stimulation: Neuromodulation across Multiple Segments of the Spinal Cord. Journal of Clinical Medicine, 2022, 11, 639.	2.4	8
23	Velocity-Specific Strength Recovery After a Second Bout of Eccentric Exercise. Journal of Strength and Conditioning Research, 2014, 28, 339-349.	2.1	7
24	Reliability of Multiple Baseline Measures for Locomotor Retraining after Stroke. Biosystems and Biorobotics, 2014, , 479-486.	0.3	6
25	Effects of enhanced cutaneous sensory input on interlimb strength transfer of the wrist extensors. Physiological Reports, 2020, 8, e14406.	1.7	5
26	Indirect Vibration of the Upper Limbs Alters Transmission Along Spinal but Not Corticospinal Pathways. Frontiers in Human Neuroscience, 2021, 15, 617669.	2.0	5
27	Changing coupling between the arms and legs with slow walking speeds alters regulation of somatosensory feedback. Experimental Brain Research, 2020, 238, 1335-1349.	1.5	4
28	Modulation of the Hoffmann reflex in the tibialis anterior with a change in posture. Physiological Reports, 2019, 7, e14179.	1.7	3
29	Does increasing the number of channels during neuromuscular electrical stimulation reduce fatigability and produce larger contractions with less discomfort?. European Journal of Applied Physiology, 2021, 121, 2621-2633.	2.5	3
30	Contraction fatigability during interleaved neuromuscular electrical stimulation of the ankle dorsiflexors does not depend on contraction amplitude. Applied Physiology, Nutrition and Metabolism, 2020, 45, 948-956.	1.9	2
31	Equivalent Bilateral Early Latency Cutaneous Reflex Amplitudes during Graded Contractions in Right Handers. Biosystems and Biorobotics, 2014, , 279-287.	0.3	1
32	Strength Asymmetries In The Upper Limbs Of Right- And Left-handed Individuals. Medicine and Science in Sports and Exercise, 2010, 42, 584.	0.4	0
33	Neuromechanical Interlimb Interactions and Rehabilitation of Walking after Stroke. Biosystems and Biorobotics, 2014, , 219-225.	0.3	0
34	The Effect Of High And Low Glycemic Index Meals On Soccer Tournament Performance. Medicine and Science in Sports and Exercise, 2009, 41, 100.	0.4	0