José A Cornejo-GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8840005/publications.pdf

Version: 2024-02-01

59 papers 1,057

20 h-index 30 g-index

59 all docs

59 docs citations

59 times ranked

1030 citing authors

#	Article	IF	Citations
1	HLA-DRA variants predict penicillin allergy in genome-wide fine-mapping genotyping. Journal of Allergy and Clinical Immunology, 2015, 135, 253-259.e10.	2.9	72
2	Progress in understanding hypersensitivity reactions to nonsteroidal antiâ€inflammatory drugs. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 561-575.	5.7	66
3	Hypersensitivity Reactions to Non-Steroidal Anti-Inflammatory Drugs. Current Drug Metabolism, 2009, 10, 971-980.	1.2	57
4	The Diamine Oxidase Gene Is Associated with Hypersensitivity Response to Non-Steroidal Anti-Inflammatory Drugs. PLoS ONE, 2012, 7, e47571.	2.5	52
5	Advanced phenotyping in hypersensitivity drug reactions to <scp>NSAID</scp> s. Clinical and Experimental Allergy, 2013, 43, 1097-1109.	2.9	50
6	Genetic variants of the arachidonic acid pathway in nonâ€steroidal antiâ€inflammatory drugâ€induced acute urticaria. Clinical and Experimental Allergy, 2012, 42, 1772-1781.	2.9	49
7	Pharmacogenomics of cyclooxygenases. Pharmacogenomics, 2015, 16, 501-522.	1.3	43
8	Review: High-performance computing to detect epistasis in genome scale data sets. Briefings in Bioinformatics, 2016, 17, 368-379.	6.5	39
9	Allergic Reactions to Metamizole: Immediate and Delayed Responses. International Archives of Allergy and Immunology, 2016, 169, 223-230.	2.1	37
10	NSAIDs-hypersensitivity often induces a blended reaction pattern involving multiple organs. Scientific Reports, 2018, 8, 16710.	3.3	36
11	Pharmacogenomics of Prostaglandin and Leukotriene Receptors. Frontiers in Pharmacology, 2016, 7, 316.	3.5	32
12	Genome-wide association study in NSAID-induced acute urticaria/angioedema in Spanish and Han Chinese populations. Pharmacogenomics, 2013, 14, 1857-1869.	1.3	31
13	Hypersensitivity Reactions to Non-Steroidal Anti-Inflammatory Drugs. Current Pharmaceutical Design, 2017, 22, 6784-6802.	1.9	30
14	Beta-lactam-induced immediate hypersensitivity reactions: AÂgenome-wide association study of a deeply phenotyped cohort. Journal of Allergy and Clinical Immunology, 2021, 147, 1830-1837.e15.	2.9	26
15	Omics technologies in allergy and asthma research: An <scp>EAACI</scp> position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2888-2908.	5.7	25
16	Unravelling adverse reactions to NSAIDs using systems biology. Trends in Pharmacological Sciences, 2015, 36, 172-180.	8.7	24
17	Eicosanoid mediator profiles in different phenotypes of nonsteroidal antiâ€inflammatory drugâ€induced urticaria. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1135-1144.	5.7	23
18	Genetic variants in arachidonic acid pathway genes associated with NSAID-exacerbated respiratory disease. Pharmacogenomics, 2015, 16, 825-839.	1.3	22

#	Article	IF	CITATIONS
19	FCERI and Histamine Metabolism Gene Variability in Selective Responders to NSAIDS. Frontiers in Pharmacology, 2016, 7, 353.	3.5	22
20	Immediate Reactions to More Than 1 NSAID Must Not Be Considered Cross-Hypersensitivity Unless Tolerance to ASA Is Verified. Journal of Investigational Allergology and Clinical Immunology, 2017, 27, 32-39.	1.3	22
21	Nonimmediate reactions to betalactams. Current Opinion in Allergy and Clinical Immunology, 2007, 7, 310-316.	2.3	21
22	Variability in histamine receptor genes <i>HRH1</i> , <i>HRH2</i> and <i>HRH4</i> in patients with hypersensitivity to NSAIDs. Pharmacogenomics, 2013, 14, 1871-1878.	1.3	18
23	Variants of CEP68 Gene Are Associated with Acute Urticaria/Angioedema Induced by Multiple Non-Steroidal Anti-Inflammatory Drugs. PLoS ONE, 2014, 9, e90966.	2.5	17
24	Update on the Genetic Basis of Drug Hypersensitivity Reactions. Journal of Investigational Allergology and Clinical Immunology, 2017, 27, 336-345.	1.3	17
25	Asthma and Rhinitis Induced by Selective Immediate Reactions to Paracetamol and Non-steroidal Anti-inflammatory Drugs in Aspirin Tolerant Subjects. Frontiers in Pharmacology, 2016, 7, 215.	3. 5	16
26	Copy number variation in ALOX5 and PTGER1 is associated with NSAIDs-induced urticaria and/or angioedema. Pharmacogenetics and Genomics, 2016, 26, 280-287.	1.5	15
27	Multiple nonsteroidal anti-inflammatory drug hypersensitivity without hypersensitivity to aspirin. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 524-525.	3.8	15
28	Specificities of B cell reactions to drugs. Toxicology, 2005, 209, 181-184.	4.2	13
29	Association study of genetic variants in PLA2G4A, PLCG1, LAT, SYK, and TNFRS11A genes in NSAIDs-induced urticaria and/or angioedema patients. Pharmacogenetics and Genomics, 2015, 25, 618-621.	1.5	12
30	Polymorphisms in CEP68 gene associated with risk of immediate selective reactions to non-steroidal anti-inflammatory drugs. Pharmacogenomics Journal, 2019, 19, 191-199.	2.0	12
31	Nextâ€generation sequencing and genotype association studies reveal the association of <i>HLAâ€DRB3*02:02</i> with delayed hypersensitivity to penicillins. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1827-1834.	5.7	12
32	Genetic basis of hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 285-293.	2.3	11
33	Genetic predictors of inflammation in the risk of occupational asthma in young apprentices. Annals of Allergy, Asthma and Immunology, 2013, 110, 423-428.e5.	1.0	10
34	Identification of Novel Biomarkers for Drug Hypersensitivity After Sequencing of the Promoter Area in 16 Genes of the Vitamin D Pathway and the High-Affinity IgE Receptor. Frontiers in Genetics, 2019, 10, 582.	2.3	10
35	Gene variants of IL13, IL4, and IL4RA are predictors of β-lactam allergy. Journal of Allergy and Clinical Immunology, 2009, 123, 509.	2.9	9
36	<i>GNAI2</i> variants predict nonsteroidal antiâ€inflammatory drug hypersensitivity in a genomeâ€wide study. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1250-1253.	5.7	8

#	Article	IF	Citations
37	Genetic Variants of Thymic Stromal Lymphopoietin in Nonsteroidal Anti-Inflammatory Drug-Induced Urticaria/Angioedema. International Archives of Allergy and Immunology, 2016, 169, 249-255.	2.1	7
38	Deep sequencing of prostaglandinâ€endoperoxide synthase (<i>PTGE)</i> genes reveals genetic susceptibility for crossâ€reactive hypersensitivity to NSAID. British Journal of Pharmacology, 2021, 178, 1218-1233.	5.4	7
39	Genetic Variants in Cytosolic Phospholipase A2 Associated With Nonsteroidal Anti-Inflammatory Drug–Induced Acute Urticaria/Angioedema. Frontiers in Pharmacology, 2021, 12, 667824.	3.5	7
40	The study of severe cutaneous drug hypersensitivity reactions from a systems biology perspective. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 301-306.	2.3	6
41	Missense Gamma-Aminobutyric Acid Receptor Polymorphisms Are Associated with Reaction Time, Motor Time, and Ethanol Effects in Vivo. Frontiers in Cellular Neuroscience, 2018, 12, 10.	3.7	6
42	Genetic Predictors of Drug Hypersensitivity. Current Pharmaceutical Design, 2017, 22, 6725-6733.	1.9	6
43	Multiple Nonsteroidal Anti-Inflammatory Drug-Induced Cutaneous Disease: Relevance, Natural Evolution and Relationship with Atopy. International Archives of Allergy and Immunology, 2014, 164, 147-148.	2.1	5
44	The Genetics of Drug Hypersensitivity Reactions. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 222-232.	1.3	5
45	Polymorphisms in eicosanoidâ€related biosynthesis enzymes associated with acute urticaria/angioedema induced by nonsteroidal antiâ€inflammatory drug hypersensitivity. British Journal of Dermatology, 2021, 185, 815-824.	1.5	5
46	Subjects develop tolerance to Pru p 3 but respiratory allergy to Pru p 9: A large study group from a peach exposed population. PLoS ONE, 2021, 16, e0255305.	2.5	5
47	Drug-Induced Anaphylaxis. Current Treatment Options in Allergy, 2015, 2, 169-182.	2.2	4
48	Anaphylaxis to 2 NSAIDs in a Patient Who Tolerated ASA. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 266-268.	1.3	4
49	Platelet-Adherent Leukocytes Associated With Cutaneous Cross-Reactive Hypersensitivity to Nonsteroidal Anti-Inflammatory Drugs. Frontiers in Pharmacology, 2020, 11, 594427.	3.5	3
50	Evaluation of Subjects Experiencing Allergic Reactions to Non-Steroidal Anti-Inflammatory Drugs: Clinical Characteristics and Drugs Involved. Frontiers in Pharmacology, 2020, 11, 503.	3.5	3
51	Promoter Genotyping and mRNA Expression – Based Analysis of the PTGDR Gene in Allergy. Journal of Investigational Allergology and Clinical Immunology, 2020, 30, 117-126.	1.3	2
52	Targeted inhibition of allergenâ€induced histamine production by neutrophils. FASEB Journal, 2021, 35, e21483.	0.5	2
53	An Update on the Immunological, Metabolic and Genetic Mechanisms in Drug Hypersensitivity Reactions. Current Pharmaceutical Design, 2019, 25, 3813-3828.	1.9	2
54	Pharmacogenomics as a Tool for Management of Drug Hypersensitivity Reactions. Current Treatment Options in Allergy, 2019, 6, 1-17.	2.2	1

#	Article	IF	CITATIONS
55	Acetylsalicylic acid challenge optimal dose in nonsteroidal antiâ€inflammatory drugs hypersensitivity diagnosis. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1501-1503.	5 .7	1
56	Atopy Can Be an Interfering Factor in Genetic Association Studies of ß-Lactam Allergy. Journal of Investigational Allergology and Clinical Immunology, 2020, 30, 63-65.	1.3	1
57	Genetic Variants of Alcohol Metabolizing Enzymes and Alcohol-Related Liver Cirrhosis Risk. Journal of Personalized Medicine, 2021, 11, 409.	2.5	1
58	Genetic Variants Associated With Drug-Induced Hypersensitivity Reactions: towards Precision Medicine?. Current Treatment Options in Allergy, 2021, 8, 42-59.	2.2	0
59	Lack of Major Involvement of Common CYP2C Gene Polymorphisms in the Risk of Developing Cross-Hypersensitivity to NSAIDs. Frontiers in Pharmacology, 2021, 12, 648262.	3.5	0