Zai-Ping Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8839354/publications.pdf

Version: 2024-02-01

996 3321 46,537 538 114 184 citations h-index g-index papers 549 549 549 27333 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Science Advances, 2019, 5, eaav7412.	4.7	790
2	Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. Journal of the American Chemical Society, 2017, 139, 3316-3319.	6.6	755
3	An Inâ€Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Znâ€lon Batteries. Advanced Materials, 2020, 32, e2003021.	11.1	707
4	Confining Sulfur in Doubleâ€Shelled Hollow Carbon Spheres for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2012, 51, 9592-9595.	7.2	692
5	Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries. Angewandte Chemie - International Edition, 2006, 45, 6896-6899.	7.2	656
6	Boosted Charge Transfer in SnS/SnO ₂ Heterostructures: Toward High Rate Capability for Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 3408-3413.	7.2	621
7	Designing Dendriteâ€Free Zinc Anodes for Advanced Aqueous Zinc Batteries. Advanced Functional Materials, 2020, 30, 2001263.	7.8	598
8	Enhanced Sodium-Ion Battery Performance by Structural Phase Transition from Two-Dimensional Hexagonal-SnS ₂ to Orthorhombic-SnS. ACS Nano, 2014, 8, 8323-8333.	7.3	592
9	Recent progress on sodium ion batteries: potential high-performance anodes. Energy and Environmental Science, 2018, 11, 2310-2340.	15.6	561
10	Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chemical Communications, 2010, 46, 1106-1108.	2.2	527
11	Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Materials, 2019, 20, 410-437.	9.5	525
12	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Lowâ€Cost Antisolvents. Angewandte Chemie - International Edition, 2021, 60, 7366-7375.	7.2	516
13	Electrolyte Design for In Situ Construction of Highly Zn ²⁺ â€Conductive Solid Electrolyte Interphase to Enable Highâ€Performance Aqueous Zn″on Batteries under Practical Conditions. Advanced Materials, 2021, 33, e2007416.	11.1	484
14	Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy and Environmental Science, 2020, 13, 3917-3949.	15.6	480
15	Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries. Joule, 2018, 2, 1534-1547.	11.7	468
16	Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1801149.	10.2	442
17	CoS Quantum Dot Nanoclusters for Highâ€Energy Potassiumâ€lon Batteries. Advanced Functional Materials, 2017, 27, 1702634.	7.8	391
18	Boosting the Potassium Storage Performance of Alloyâ€Based Anode Materials via Electrolyte Salt Chemistry. Advanced Energy Materials, 2018, 8, 1703288.	10.2	382

#	Article	IF	Citations
19	Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nature Communications, 2021, 12, 6606.	5.8	369
20	Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion To Trigger Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 5087-5092.	6.6	351
21	Atomic Interface Engineering and Electricâ€Field Effect in Ultrathin Bi ₂ MoO ₆ Nanosheets for Superior Lithium Ion Storage. Advanced Materials, 2017, 29, 1700396.	11.1	343
22	Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications. Materials Research Bulletin, 2009, 44, 1811-1815.	2.7	339
23	Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy, 2019, 57, 728-736.	8.2	323
24	3D Hierarchical Porous αâ€Fe ₂ O ₃ Nanosheets for Highâ€Performance Lithiumâ€lon Batteries. Advanced Energy Materials, 2015, 5, 1401421.	10.2	321
25	Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. ChemSusChem, 2015, 8, 2789-2825.	3.6	302
26	Monodisperse Magnesium Hydride Nanoparticles Uniformly Selfâ€Assembled on Graphene. Advanced Materials, 2015, 27, 5981-5988.	11.1	298
27	Bio-inspired design of an <i>in situ</i> multifunctional polymeric solid–electrolyte interphase for Zn metal anode cycling at 30 mA cm ^{â^²2} and 30 mA h cm ^{â^²2} . Energy and Environmental Science, 2021, 14, 5947-5957.	15.6	289
28	Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon, 2012, 50, 1897-1903.	5 . 4	276
29	Advances in Polar Materials for Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707520.	7.8	268
30	Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochimica Acta, 2006, 51, 4634-4638.	2.6	265
31	Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochimica Acta, 2005, 51, 23-28.	2.6	263
32	Catalytic Role of Ge in Highly Reversible GeO ₂ /Ge/C Nanocomposite Anode Material for Lithium Batteries. Nano Letters, 2013, 13, 1230-1236.	4.5	261
33	The critical role of carbon in marrying silicon and graphite anodes for highâ€energy lithiumâ€ion batteries. , 2019, 1, 57-76.		261
34	Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework. Advanced Materials, 2014, 26, 6749-6755.	11.1	260
35	Advances in nanostructures fabricated <i>via < /i>spray pyrolysis and their applications in energy storage and conversion. Chemical Society Reviews, 2019, 48, 3015-3072.</i>	18.7	260
36	Toward Highâ€Performance Hybrid Znâ€Based Batteries via Deeply Understanding Their Mechanism and Using Electrolyte Additive. Advanced Functional Materials, 2019, 29, 1903605.	7.8	259

#	Article	IF	CITATIONS
37	Surface Engineering Strategies of Layered LiCoO ₂ Cathode Material to Realize Highâ€Energy and Highâ€Voltage Liâ€Ion Cells. Advanced Energy Materials, 2017, 7, 1601507.	10.2	257
38	Enhanced Structural Stability of Nickel–Cobalt Hydroxide via Intrinsic Pillar Effect of Metaborate for High-Power and Long-Life Supercapacitor Electrodes. Nano Letters, 2017, 17, 429-436.	4.5	241
39	An Allâ€Integrated Anode via Interlinked Chemical Bonding between Double‧helled–Yolk‧tructured Silicon and Binder for Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1703028.	11.1	238
40	Yolk–Shell Structured FeP@C Nanoboxes as Advanced Anode Materials for Rechargeable Lithiumâ€∤Potassium″on Batteries. Advanced Functional Materials, 2019, 29, 1808291.	7.8	232
41	Selfâ€Assembled Germanium/Carbon Nanostructures as Highâ€Power Anode Material for the Lithiumâ€lon Battery. Angewandte Chemie - International Edition, 2012, 51, 5657-5661.	7.2	231
42	Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zincâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2104281.	7.8	225
43	Two-dimensional nanostructures for sodium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 3284-3303.	5.2	224
44	Toward a Reversible Mn ⁴⁺ /Mn ²⁺ Redox Reaction and Dendriteâ€Free Zn Anode in Nearâ€Neutral Aqueous Zn/MnO ₂ Batteries via Salt Anion Chemistry. Advanced Energy Materials, 2020, 10, 1904163.	10.2	221
45	In Situ Construction of 3D Interconnected FeS@Fe ₃ C@Graphitic Carbon Networks for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1703390.	7.8	219
46	Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy and Environmental Science, 2013, 6, 974.	15.6	217
47	An Intrinsically Nonâ€flammable Electrolyte for Highâ€Performance Potassium Batteries. Angewandte Chemie - International Edition, 2020, 59, 3638-3644.	7.2	211
48	Anion Vacancies Regulating Endows MoSSe with Fast and Stable Potassium Ion Storage. ACS Nano, 2019, 13, 11843-11852.	7.3	210
49	Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Applied Surface Science, 2016, 379, 73-82.	3.1	208
50	Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nature Communications, 2018, 9, 3645.	5.8	204
51	Potholeâ€rich Ultrathin WO ₃ Nanosheets that Trigger N≡N Bond Activation of Nitrogen for Direct Nitrate Photosynthesis. Angewandte Chemie - International Edition, 2019, 58, 731-735.	7.2	202
52	Cathode Materials for Potassium-Ion Batteries: Current Status and Perspective. Electrochemical Energy Reviews, 2018, 1, 625-658.	13.1	201
53	A Strategy for Configuration of an Integrated Flexible Sulfur Cathode for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 3992-3996.	7.2	200
54	Integrated Carbon/Red Phosphorus/Graphene Aerogel 3D Architecture via Advanced Vaporâ€Redistribution for Highâ€Energy Sodiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1601037.	10.2	198

#	Article	IF	Citations
55	Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. Journal of Power Sources, 2010, 195, 2372-2376.	4.0	187
56	Developing high-voltage spinel LiNi _{0.5} Mn _{1.5} O ₄ cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects. Journal of Materials Chemistry A, 2020, 8, 15373-15398.	5. 2	186
57	Rapid microwave-assisted synthesis of Mn3O4–graphene nanocomposite and its lithium storage properties. Journal of Materials Chemistry, 2012, 22, 3600.	6.7	183
58	Synthesis of MoS ₂ –C One-Dimensional Nanostructures with Improved Lithium Storage Properties. ACS Applied Materials & Diterfaces, 2012, 4, 3765-3768.	4.0	183
59	Surface Engineering and Design Strategy for Surfaceâ€Amorphized TiO ₂ @Graphene Hybrids for High Power Liâ€Ion Battery Electrodes. Advanced Science, 2015, 2, 1500027.	5.6	182
60	Plasmaâ€Induced Amorphous Shell and Deep Cationâ€Site S Doping Endow TiO ₂ with Extraordinary Sodium Storage Performance. Advanced Materials, 2018, 30, e1801013.	11.1	180
61	Preparation and characterization of novel spinel Li4Ti5O12â^'xBrx anode materials. Electrochimica Acta, 2009, 54, 4772-4776.	2.6	175
62	Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels. Sensors and Actuators B: Chemical, 2009, 140, 549-556.	4.0	174
63	Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. Journal of Power Sources, 2005, 146, 448-451.	4.0	172
64	Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon, 2015, 81, 782-787.	5.4	170
65	Constructing CoO/Co ₃ S ₄ Heterostructures Embedded in Nâ€doped Carbon Frameworks for Highâ€Performance Sodiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1901925.	7.8	169
66	Feasibility of Cathode Surface Coating Technology for Highâ€Energy Lithiumâ€ion and Beyondâ€Lithiumâ€ion Batteries. Advanced Materials, 2017, 29, 1605807.	11.1	168
67	A new energy storage system: Rechargeable potassium-selenium battery. Nano Energy, 2017, 35, 36-43.	8.2	168
68	Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application. Electrochemistry Communications, 2007, 9, 119-122.	2.3	167
69	Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. Journal of Materials Chemistry, 2012, 22, 5848.	6.7	165
70	From room temperature to harsh temperature applications: Fundamentals and perspectives on electrolytes in zinc metal batteries. Science Advances, 2022, 8, eabn5097.	4.7	164
71	Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Materials Today, 2021, 50, 400-417.	8.3	161
72	Li-Rich Layered Oxides and Their Practical Challenges: Recent Progress and Perspectives. Electrochemical Energy Reviews, 2019, 2, 277-311.	13.1	158

#	Article	IF	CITATIONS
73	Brâ€Doped Li ₄ Ti ₅ O ₁₂ and Composite TiO ₂ Anodes for Liâ€ion Batteries: Synchrotron Xâ€Ray and in situ Neutron Diffraction Studies. Advanced Functional Materials, 2011, 21, 3990-3997.	7.8	157
74	Local Electric Field Facilitates High-Performance Li-lon Batteries. ACS Nano, 2017, 11, 8519-8526.	7.3	155
75	Manipulating the Solvation Structure of Nonflammable Electrolyte and Interface to Enable Unprecedented Stability of Graphite Anodes beyond 2 Years for Safe Potassiumâ€lon Batteries. Advanced Materials, 2021, 33, e2006313.	11.1	155
76	2020 Roadmap on Carbon Materials for Energy Storage and Conversion. Chemistry - an Asian Journal, 2020, 15, 995-1013.	1.7	154
77	Metal chalcogenides for potassium storage. InformaÄnÃ-Materiály, 2020, 2, 437-465.	8.5	154
78	Electrochemical lithiation and de-lithiation of MWNT–Sn/SnNi nanocomposites. Carbon, 2005, 43, 1392-1399.	5 . 4	151
79	Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochemistry Communications, 2012, 20, 7-10.	2.3	151
80	Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries. Nano Energy, 2018, 53, 967-974.	8.2	151
81	Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium–sulfur batteries. Energy and Environmental Science, 2021, 14, 1835-1853.	15.6	150
82	Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH2. International Journal of Hydrogen Energy, 2010, 35, 4569-4575.	3.8	149
83	Synthesis of Ni(OH) ₂ /RGO pseudocomposite on nickel foam for supercapacitors with superior performance. Journal of Materials Chemistry A, 2015, 3, 3641-3650.	5.2	149
84	Liquid metal batteries for future energy storage. Energy and Environmental Science, 2021, 14, 4177-4202.	15.6	149
85	Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Storage Materials, 2019, 23, 547-555.	9.5	148
86	A Long Cycleâ€Life Highâ€Voltage Spinel Lithiumâ€Ion Battery Electrode Achieved by Siteâ€Selective Doping. Angewandte Chemie - International Edition, 2020, 59, 10594-10602.	7.2	144
87	Novel nano-silicon/polypyrrole composites for lithium storage. Electrochemistry Communications, 2007, 9, 941-946.	2.3	141
88	Integrated Intercalationâ€Based and Interfacial Sodium Storage in Grapheneâ€Wrapped Porous Li ₄ Ti ₅ O ₁₂ Nanofibers Composite Aerogel. Advanced Energy Materials, 2016, 6, 1600322.	10.2	141
89	Heterostructure Manipulation <i>via in Situ</i> Localized Phase Transformation for High-Rate and Highly Durable Lithium Ion Storage. ACS Nano, 2018, 12, 10430-10438.	7.3	138
90	Fluorinated phosphazene derivative – A promising electrolyte additive for high voltage lithium ion batteries: From electrochemical performance to corrosion mechanism. Nano Energy, 2018, 46, 404-414.	8.2	137

#	Article	IF	Citations
91	Hollow-Carbon-Templated Few-Layered V ₅ S ₈ Nanosheets Enabling Ultrafast Potassium Storage and Long-Term Cycling. ACS Nano, 2019, 13, 7939-7948.	7.3	136
92	Direct Evidence of Concurrent Solid-Solution and Two-Phase Reactions and the Nonequilibrium Structural Evolution of LiFePO ₄ . Journal of the American Chemical Society, 2012, 134, 7867-7873.	6.6	135
93	Investigation of discharge reaction mechanism of lithium liquid electrolyte sulfur battery. Journal of Power Sources, 2009, 189, 1179-1183.	4.0	134
94	A new class of cathode materials for rechargeable magnesium batteries: Organosulfur compounds based on sulfur–sulfur bonds. Electrochemistry Communications, 2007, 9, 1913-1917.	2.3	132
95	Coupling efficient biomass upgrading with H ₂ production <i>via</i> bifunctional Cu _x S@NiCo-LDH core–shell nanoarray electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 1138-1146.	5.2	132
96	Simple fabrication of a Fe2O3/carbon composite for use in a high-performance lithium ion battery. Carbon, 2013, 52, 565-573.	5.4	131
97	Electrospun P2-type Na _{2/3} (Fe _{1/2} Mn _{1/2})O ₂ Hierarchical Nanofibers as Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Diterfaces, 2014, 6, 8953-8958.	4.0	131
98	Carbon-coated SnO ₂ @C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery. Journal of Materials Chemistry, 2012, 22, 2766-2773.	6.7	129
99	Interfacial Engineering of Nickel Boride/Metaborate and Its Effect on High Energy Density Asymmetric Supercapacitors. ACS Nano, 2019, 13, 9376-9385.	7.3	129
100	Insight of a Phase Compatible Surface Coating for Longâ€Durable Liâ€Rich Layered Oxide Cathode. Advanced Energy Materials, 2019, 9, 1901795.	10.2	129
101	Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 22465-22471.	5.2	128
102	Engineering Textile Electrode and Bacterial Cellulose Nanofiber Reinforced Hydrogel Electrolyte to Enable Highâ∈Performance Flexible Allâ∈Solidâ∈State Supercapacitors. Advanced Energy Materials, 2021, 11, 2003010.	10.2	128
103	Nanomaterials for Lithium-ion Rechargeable Batteries. Journal of Nanoscience and Nanotechnology, 2006, 6, 1-15.	0.9	127
104	MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 9350.	6.7	127
105	Rational design of Si@carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage. Nano Energy, 2017, 39, 253-261.	8.2	126
106	Structural Insight into Layer Gliding and Lattice Distortion in Layered Manganese Oxide Electrodes for Potassiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1900568.	10.2	125
107	Coal based activated carbon nanofibers prepared by electrospinning. Journal of Materials Chemistry A, 2014, 2, 9338-9344.	5.2	122
108	Lithium Metal Electrode with Increased Air Stability and Robust Solid Electrolyte Interphase Realized by Silane Coupling Agent Modification. Advanced Materials, 2021, 33, e2008133.	11.1	122

#	Article	IF	Citations
109	Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH ₂ . Journal of Materials Chemistry A, 2015, 3, 15843-15848.	5.2	121
110	Interplay between Electrochemistry and Phase Evolution of the P2-type Na _{<i>x</i><(sub><i>x</i><(sub>)O₂ Cathode for Use in Sodium-Ion Batteries. Chemistry of Materials, 2015, 27, 3150-3158.}	3.2	121
111	Si-based anode materials for lithium rechargeable batteries. Journal of Materials Chemistry, 2010, 20, 10055.	6.7	120
112	Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries. Electrochimica Acta, 2010, 55, 2582-2586.	2.6	119
113	Synthesis of Co3O4/Carbon composite nanowires and their electrochemical properties. Journal of Power Sources, 2011, 196, 6987-6991.	4.0	118
114	Biomass-Derived Carbon Materials for High-Performance Supercapacitors: Current Status and Perspective. Electrochemical Energy Reviews, 2021, 4, 219-248.	13.1	118
115	Electrolyte Engineering Enables High Performance Zinc″on Batteries. Small, 2022, 18, e2107033.	5.2	118
116	Controlled synthesis of \hat{l}_{\pm} -Fe2O3 nanostructures and their size-dependent electrochemical properties for lithium-ion batteries. Journal of Power Sources, 2008, 184, 456-461.	4.0	117
117	Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries. Nanoscale, 2013, 5, 1922.	2.8	117
118	Bimetallic metal-organic frameworks derived Ni-Co-Se@C hierarchical bundle-like nanostructures with high-rate pseudocapacitive lithium ion storage. Energy Storage Materials, 2019, 17, 374-384.	9.5	117
119	Boosted Charge Transfer in SnS/SnO ₂ Heterostructures: Toward High Rate Capability for Sodiumâ€ion Batteries. Angewandte Chemie, 2016, 128, 3469-3474.	1.6	116
120	Underwater Self-Cleaning Scaly Fabric Membrane for Oily Water Separation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4336-4343.	4.0	113
121	Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy, 2020, 74, 104817.	8.2	112
122	A New Strategy for Achieving a High Performance Anode for Lithium Ion Batteries—Encapsulating Germanium Nanoparticles in Carbon Nanoboxes. Advanced Energy Materials, 2016, 6, 1501666.	10.2	111
123	Carbon hollow nanobubbles on porous carbon nanofibers: An ideal host for high-performance sodium-sulfur batteries and hydrogen storage. Energy Storage Materials, 2018, 14, 314-323.	9.5	110
124	Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design. Energy and Environmental Science, 2022, 15, 2732-2752.	15.6	110
125	Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor. Carbon, 2014, 79, 554-562.	5.4	109
126	SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Research, 2014, 7, 1466-1476.	5.8	108

#	Article	IF	CITATIONS
127	Improved cyclability of lithium–sulfur battery cathode using encapsulated sulfur in hollow carbon nanofiber@nitrogen-doped porous carbon core–shell composite. Carbon, 2014, 78, 1-9.	5.4	108
128	Rapid Synthesis of Amino Acid Polyoxometalate Nanotubes by One-Step Solid-State Chemical Reaction at Room Temperature. Advanced Functional Materials, 2006, 16, 687-692.	7.8	107
129	Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium. Journal of Alloys and Compounds, 2007, 427, 94-100.	2.8	107
130	Solvent-assisted molten salt process: A new route to synthesise \hat{l}_{\pm} -Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries. Electrochimica Acta, 2010, 55, 5006-5013.	2.6	107
131	Toward Understanding the Lithium Transport Mechanism in Garnet-type Solid Electrolytes: Li ⁺ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites. Chemistry of Materials, 2015, 27, 6650-6659.	3.2	107
132	Reversible sodium storage via conversion reaction of a MoS ₂ –C composite. Chemical Communications, 2014, 50, 10730-10733.	2.2	105
133	Free-standing sulfur-polypyrrole cathode in conjunction with polypyrrole-coated separator for flexible Li-S batteries. Energy Storage Materials, 2018, 13, 312-322.	9.5	105
134	Borohydrideâ€Scaffolded Li/Na/Mg Fast Ionic Conductors for Promising Solidâ€State Electrolytes. Advanced Materials, 2019, 31, e1803533.	11.1	105
135	Building Artificial Solidâ€Electrolyte Interphase with Uniform Intermolecular Ionic Bonds toward Dendriteâ€Free Lithium Metal Anodes. Advanced Functional Materials, 2020, 30, 2002414.	7.8	104
136	Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: a highly efficient anode material for lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 3253.	6.7	103
137	Unique Structural Design and Strategies for Germaniumâ€Based Anode Materials Toward Enhanced Lithium Storage. Advanced Energy Materials, 2017, 7, 1700488.	10.2	103
138	Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochimica Acta, 2013, 87, 801-808.	2.6	101
139	Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries. Nano Energy, 2019, 63, 103854.	8.2	100
140	Structural Engineering of Hierarchical Microâ€nanostructured Ge–C Framework by Controlling the Nucleation for Ultralongâ€Life Li Storage. Advanced Energy Materials, 2019, 9, 1900081.	10.2	99
141	Recent Advances in 3D Graphene Architectures and Their Composites for Energy Storage Applications. Small, 2019, 15, e1803858.	5.2	99
142	Challenges and prospects of lithium–CO ₂ batteries., 2022, 1, e9120001.		99
143	Phosphorusâ€Based Materials as the Anode for Sodiumâ€Ion Batteries. Small Methods, 2017, 1, 1700216.	4.6	98
144	p-Type SnO thin layers on n-type SnS ₂ nanosheets with enriched surface defects and embedded charge transfer for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 512-518.	5.2	97

#	Article	IF	Citations
145	Synthesis and characterization of SnO2–polypyrrole composite for lithium-ion battery. Journal of Power Sources, 2007, 174, 1183-1187.	4.0	96
146	Significantly improved dehydrogenation of LiBH ₄ destabilized by TiF ₃ . Energy and Environmental Science, 2010, 3, 465-470.	15.6	96
147	MoO2/Mo2C/C spheres as anode materials for lithium ion batteries. Carbon, 2016, 96, 1200-1207.	5.4	96
148	W3Nb14O44 nanowires: Ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Storage Materials, 2019, 16, 535-544.	9.5	96
149	Hierarchically Bicontinuous Porous Copper as Advanced 3D Skeleton for Stable Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13552-13561.	4.0	95
150	Recent Progress in Designing Stable Composite Lithium Anodes with Improved Wettability. Advanced Science, 2020, 7, 2002212.	5.6	95
151	Phase Compatible NiFe ₂ O ₄ Coating Tunes Oxygen Redox in Li-Rich Layered Oxide. ACS Nano, 2021, 15, 11607-11618.	7.3	95
152	Enhanced hydrogen storage performances of NaBH4–MgH2 system. Journal of Alloys and Compounds, 2009, 479, 619-623.	2.8	93
153	Free-standing V2O5 electrode for flexible lithium ion batteries. Electrochemistry Communications, 2011, 13, 383-386.	2.3	93
154	Li ₂ TiSiO ₅ : a low potential and large capacity Ti-based anode material for Li-ion batteries. Energy and Environmental Science, 2017, 10, 1456-1464.	15.6	93
155	Recent progress and perspectives on dual-ion batteries. EnergyChem, 2019, 1, 100004.	10.1	93
156	Spherical Clusters of NiO Nanoshafts for Lithium-Ion Battery Anodes. Electrochemical and Solid-State Letters, 2006, 9, A524.	2.2	92
157	Nano-structured spherical porous SnO2 anodes for lithium-ion batteries. Journal of Power Sources, 2006, 159, 345-348.	4.0	91
158	Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite. International Journal of Hydrogen Energy, 2010, 35, 7821-7826.	3.8	90
159	α-Fe2O3 as an anode material with capacity rise and high rate capability for lithium-ion batteries. Materials Research Bulletin, 2011, 46, 858-864.	2.7	90
160	Shape Evolution of \hat{l} ±-Fe[sub 2]O[sub 3] and Its Size-Dependent Electrochemical Properties for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2008, 155, A196.	1.3	89
161	Highly porous reticular tin–cobalt oxide composite thin film anodes for lithium ion batteries. Journal of Materials Chemistry, 2009, 19, 8360.	6.7	88
162	Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application. Journal of Power Sources, 2019, 419, 192-202.	4.0	87

#	Article	IF	Citations
163	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low ost Antisolvents. Angewandte Chemie, 2021, 133, 7442-7451.	1.6	87
164	Silicon/Disordered Carbon Nanocomposites for Lithium-lon Battery Anodes. Journal of the Electrochemical Society, 2005, 152, A2211.	1.3	86
165	Preparation of \hat{l} ±-Fe2O3 submicro-flowers by a hydrothermal approach and their electrochemical performance in lithium-ion batteries. Electrochimica Acta, 2008, 53, 4213-4218.	2.6	86
166	Super high-rate, long cycle life of europium-modified, carbon-coated, hierarchical mesoporous lithium-titanate anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 9949-9957.	5.2	86
167	Graphene-wrapped reversible reaction for advanced hydrogen storage. Nano Energy, 2016, 26, 488-495.	8.2	86
168	Phase Engineering of Nickel Sulfides to Boost Sodium―and Potassium―kon Storage Performance. Advanced Functional Materials, 2021, 31, 2010832.	7.8	86
169	Dehydrationâ€Triggered Ionic Channel Engineering in Potassium Niobate for Li/Kâ€Ion Storage. Advanced Materials, 2020, 32, e2000380.	11.1	85
170	Graphene–V2O5·nH2O xerogel composite cathodes for lithium ion batteries. RSC Advances, 2011, 1, 690.	1.7	84
171	Nitrogen-Doped Carbon-Encapsulated SnO ₂ @Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-lon Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 197-207.	4.0	84
172	Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life. Journal of Power Sources, 2015, 278, 574-581.	4.0	83
173	A Combined Hydrogen Storage System of Mg(BH ₄) ₂ â°'LiNH ₂ with Favorable Dehydrogenation. Journal of Physical Chemistry C, 2010, 114, 4733-4737.	1.5	82
174	Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy, 2020, 77, 105118.	8.2	82
175	Multiwalled carbon nanotube-supported Pt/Sn and Pt/Sn/PMo12 electrocatalysts for methanol electro-oxidation. International Journal of Hydrogen Energy, 2009, 34, 2426-2434.	3.8	80
176	SnO2 nanocrystals on self-organized TiO2 nanotube array as three-dimensional electrode for lithium ion microbatteries. Journal of Materials Chemistry, 2010, 20, 5689.	6.7	80
177	SnO2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 9707.	6.7	80
178	A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries. Journal of Materials Chemistry A, 2013, $1,14115$.	5.2	80
179	A novel type of one-dimensional organic selenium-containing fiber with superior performance for lithium–selenium and sodium–selenium batteries. RSC Advances, 2014, 4, 61673-61678.	1.7	80
180	General Synthesis of Porous Mixed Metal Oxide Hollow Spheres with Enhanced Supercapacitive Properties. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17226-17232.	4.0	80

#	Article	IF	CITATIONS
181	NiCo[sub 2]O[sub 4]/C Nanocomposite as a Highly Reversible Anode Material for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2008, 11, A64.	2.2	79
182	Dispersion of SnO2 nanocrystals on TiO2(B) nanowires as anode material for lithium ion battery applications. RSC Advances, 2011, 1, 1834.	1.7	79
183	Na ₂ Ti ₆ O ₁₃ Nanorods with Dominant Large Interlayer Spacing Exposed Facet for Highâ€Performance Naâ€lon Batteries. Small, 2016, 12, 2991-2997.	5.2	78
184	Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5373-5379.	4.0	78
185	Coupling Topological Insulator SnSb ₂ Te ₄ Nanodots with Highly Doped Graphene for Highâ€Rate Energy Storage. Advanced Materials, 2020, 32, e1905632.	11.1	78
186	Electron-Injection-Engineering Induced Phase Transition toward Stabilized 1T-MoS ₂ with Extraordinary Sodium Storage Performance. ACS Nano, 2021, 15, 8896-8906.	7.3	77
187	Superior Stability Secured by a Four-Phase Cathode Electrolyte Interface on a Ni-Rich Cathode for Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36742-36750.	4.0	76
188	A self-healing layered GeP anode for high-performance Li-ion batteries enabled by low formation energy. Nano Energy, 2019, 61, 594-603.	8.2	76
189	Facile Synthesis of Hierarchical Networks Composed of Highly Interconnected V ₂ O ₅ Nanosheets Assembled on Carbon Nanotubes and Their Superior Lithium Storage Properties. ACS Applied Materials & Storage Properties. ACS Applied Materials & Storage Properties.	4.0	75
190	Hollow carbon spheres with encapsulated germanium as an anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 978-981.	5.2	75
191	Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries. Green Energy and Environment, 2017, 2, 278-284.	4.7	75
192	Rational Design of Coreâ€Shell ZnTe@Nâ€Doped Carbon Nanowires for High Gravimetric and Volumetric Alkali Metal Ion Storage. Advanced Functional Materials, 2021, 31, 2006425.	7.8	75
193	Hydrogen De-/Absorption Improvement of NaBH4 Catalyzed by Titanium-Based Additives. Journal of Physical Chemistry C, 2012, 116, 1596-1604.	1.5	74
194	Ultrahigh and Durable Volumetric Lithium/Sodium Storage Enabled by a Highly Dense Graphene-Encapsulated Nitrogen-Doped Carbon@Sn Compact Monolith. Nano Letters, 2020, 20, 2034-2046.	4.5	74
195	Fatigueâ€Resistant Interfacial Layer for Safe Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 25508-25513.	7.2	73
196	Strong affinity of polysulfide intermediates to multi-functional binder for practical application in lithium–sulfur batteries. Nano Energy, 2016, 26, 722-728.	8.2	72
197	Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chemical Science, 2021, 12, 8945-8966.	3.7	72
198	TiO2(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance. Journal of Materials Chemistry, 2011, 21, 8591.	6.7	71

#	Article	IF	CITATIONS
199	Effects of iron oxide (Fe2O3, Fe3O4) on hydrogen storage properties of Mg-based composites. Journal of Alloys and Compounds, 2006, 422, 299-304.	2.8	70
200	Boosted Charge Transfer in Twinborn α-(Mn ₂ O ₃ –MnO ₂) Heterostructures: Toward High-Rate and Ultralong-Life Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 32526-32535.	4.0	70
201	Harnessing Plasmaâ€Assisted Doping Engineering to Stabilize Metallic Phase MoSe ₂ for Fast and Durable Sodiumâ€ion Storage. Advanced Materials, 2022, 34, e2200397.	11.1	70
202	Controlled fabrication of Si nanoparticles on graphene sheets for Li-ion batteries. RSC Advances, 2013, 3, 6141.	1.7	69
203	Controllable synthesis of RGO/Fe _x O _y nanocomposites as high-performance anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9844-9850.	5.2	68
204	Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries. International Journal of Hydrogen Energy, 2016, 41, 14252-14260.	3.8	68
205	Phototunable Underwater Oil Adhesion of Micro/Nanoscale Hierarchicalâ€Structured ZnO Mesh Films with Switchable Contact Mode. Advanced Functional Materials, 2014, 24, 536-542.	7.8	67
206	Constructing the best symmetric full K-ion battery with the NASICON-type K3V2(PO4)3. Nano Energy, 2019, 60, 432-439.	8.2	67
207	Interfacing MXene flakes on fiber fabric as an ultrafast electron transport layer for high performance textile electrodes. Energy Storage Materials, 2020, 33, 62-70.	9.5	67
208	Phase Evolution and Intermittent Disorder in Electrochemically Lithiated Graphite Determined Using in Operando Neutron Diffraction. Chemistry of Materials, 2020, 32, 2518-2531.	3.2	67
209	An investigation of polypyrrole–LiV3O8 composite cathode materials for lithium-ion batteries. Journal of Power Sources, 2007, 174, 1095-1099.	4.0	66
210	Synthesis of spherical porous vanadium pentoxide and its electrochemical properties. Journal of Power Sources, 2008, 184, 485-488.	4.0	66
211	Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 7666.	5.2	66
212	Carbonâ€Coated Li ₃ N Nanofibers for Advanced Hydrogen Storage. Advanced Materials, 2013, 25, 6238-6244.	11.1	66
213	The Unique Structural Evolution of the O3â€Phase Na _{2/3} Fe _{2/3} Mn _{1/3} O ₂ during High Rate Charge/Discharge: A Sodiumâ€Centred Perspective. Advanced Functional Materials, 2015, 25, 4994-5005.	7.8	66
214	Lanthanide doping induced electrochemical enhancement of Na ₂ Ti ₃ O ₇ anodes for sodium-ion batteries. Chemical Science, 2018, 9, 3421-3425.	3.7	66
215	Highâ€Performance K–CO ₂ Batteries Based on Metalâ€Free Carbon Electrocatalysts. Angewandte Chemie - International Edition, 2020, 59, 3470-3474.	7.2	66
216	Hydrogen storage properties of MgH2–SiC composites. Materials Chemistry and Physics, 2009, 114, 168-172.	2.0	65

#	Article	IF	Citations
217	Synthesis of uniform polycrystalline tin dioxide nanofibers and electrochemical application in lithium-ion batteries. Electrochimica Acta, 2010, 55, 5485-5491.	2.6	65
218	Electrospun lithium metal oxide cathode materials for lithium-ion batteries. RSC Advances, 2013, 3, 25576.	1.7	65
219	One-Step Synthesis of Graphene/Polypyrrole Nanofiber Composites as Cathode Material for a Biocompatible Zinc/Polymer Battery. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16679-16686.	4.0	65
220	Highly porous, low band-gap Ni _x Mn _{3â^'x} O ₄ (0.55 ≤i>xà≤1.2) spinel nanoparticles with <i>in situ</i> coated carbon as advanced cathode materials for zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 17854-17866.	5.2	65
221	Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation. Dalton Transactions, 2011, 40, 5673.	1.6	64
222	Synthesis and electrochemical performance of ZnCo2O4 for lithium-ion battery application. Electrochimica Acta, 2015, 155, 297-304.	2.6	64
223	Selenium/carbon-rich core–shell composites as cathode materials for rechargeable lithium–selenium batteries. Journal of Power Sources, 2015, 279, 88-93.	4.0	63
224	Low-Temperature Synthesis of Polypyrrole-Coated LiV[sub 3]O[sub 8] Composite with Enhanced Electrochemical Properties. Journal of the Electrochemical Society, 2007, 154, A633.	1.3	62
225	Effects of SiC nanoparticles with and without Ni on the hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 2009, 34, 7263-7268.	3.8	62
226	A General Strategy for Antimonyâ€Based Alloy Nanocomposite Embedded in Swissâ€Cheeseâ€Like Nitrogenâ€Doped Porous Carbon for Energy Storage. Advanced Functional Materials, 2021, 31, 2009433.	7.8	62
227	Achieving Highâ€Performance Metal Phosphide Anode for Potassium Ion Batteries via Concentrated Electrolyte Chemistry. Advanced Energy Materials, 2021, 11, 2003346.	10.2	62
228	General Synthesis of Transition Metal Oxide Ultrafine Nanoparticles Embedded in Hierarchically Porous Carbon Nanofibers as Advanced Electrodes for Lithium Storage. Advanced Functional Materials, 2016, 26, 6188-6196.	7.8	61
229	Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure. Energy Storage Materials, 2021, 40, 51-71.	9.5	61
230	In-situ neutron diffraction study of the MoS2 anode using a custom-built Li-ion battery. Solid State lonics, 2011, 199-200, 37-43.	1.3	60
231	Highly Ordered Dual Porosity Mesoporous Cobalt Oxide for Sodiumâ€lon Batteries. Advanced Materials Interfaces, 2016, 3, 1500464.	1.9	60
232	Li Alginate-Based Artificial SEI Layer for Stable Lithium Metal Anodes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37726-37731.	4.0	60
233	Inâ€Situ Powder Diffraction Studies of Electrode Materials in Rechargeable Batteries. ChemSusChem, 2015, 8, 2826-2853.	3.6	59
234	Ultrathin Cobaltosic Oxide Nanosheets as an Effective Sulfur Encapsulation Matrix with Strong Affinity Toward Polysulfides. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4320-4325.	4.0	59

#	Article	IF	Citations
235	Improved Hydrogen Storage of LiBH ₄ Catalyzed Magnesium. Journal of Physical Chemistry C, 2007, 111, 12495-12498.	1.5	58
236	Enhanced hydrogen storage performance of LiAlH4â€"MgH2â€"TiF3 composite. International Journal of Hydrogen Energy, 2011, 36, 5369-5374.	3.8	58
237	Highly uniform TiO2/SnO2/carbon hybrid nanofibers with greatly enhanced lithium storage performance. Journal of Materials Chemistry A, 2013, 1, 10395.	5.2	58
238	Sodium and Lithium Storage Properties of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres. Scientific Reports, 2015, 5, 11989.	1.6	58
239	Defect Engineering in a Multiple Confined Geometry for Robust Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	58
240	Nitrogenâ€Doped Ordered Mesoporous Carbon with a High Surface Area, Synthesized through Organic–Inorganic Coassembly, and Its Application in Supercapacitors. ChemPhysChem, 2014, 15, 2084-2093.	1.0	56
241	Porous Co3O4 nanoplatelets by self-supported formation as electrode material for lithium-ion batteries. Electrochimica Acta, 2010, 55, 4805-4811.	2.6	55
242	Microwave homogeneous synthesis of porous nanowire Co3O4 arrays with high capacity and rate capability for lithium ion batteries. Materials Chemistry and Physics, 2011, 126, 747-754.	2.0	55
243	Self-Assembled LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Nanosheet Cathode with High Electrochemical Performance. ACS Applied Materials & Diterfaces, 2017, 9, 39560-39568.	4.0	55
244	Mn ₃ O ₄ Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries. ACS Applied Materials & Diterfaces, 2018, 10, 23900-23909.	4.0	55
245	Generalized Synthesis of Ternary Sulfide Hollow Structures with Enhanced Photocatalytic Performance for Degradation and Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17911-17922.	4.0	55
246	Smart Multifunctional Fluids for Lithium Ion Batteries: Enhanced Rate Performance and Intrinsic Mechanical Protection. Scientific Reports, 2013, 3, 2485.	1.6	54
247	Highâ€Polarity Fluoroalkyl Ether Electrolyte Enables Solvationâ€Free Li ⁺ Transfer for Highâ€Rate Lithium Metal Batteries. Advanced Science, 2022, 9, e2104699.	5.6	54
248	Dehydrogenation characteristics of Ti- and Ni/Ti-catalyzed Mg hydrides. Journal of Alloys and Compounds, 2009, 481, 152-155.	2.8	53
249	Hydrothermal Synthesis of Molybdenum Disulfide for Lithium Ion Battery Applications. Chinese Journal of Chemical Engineering, 2010, 18, 910-913.	1.7	53
250	Study on the dehydrogenation kinetics and thermodynamics of Ca(BH4)2. Journal of Alloys and Compounds, 2010, 500, 200-205.	2.8	53
251	Facile synthesis of graphene–molybdenum dioxide and its lithium storage properties. Journal of Materials Chemistry, 2012, 22, 16072.	6.7	53
252	Construction of Hierarchical MoSe ₂ Hollow Structures and Its Effect on Electrochemical Energy Storage and Conversion. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25483-25492.	4.0	53

#	Article	IF	CITATIONS
253	A new family of cation-disordered Zn(Cu)–Si–P compounds as high-performance anodes for next-generation Li-ion batteries. Energy and Environmental Science, 2019, 12, 2286-2297.	15.6	53
254	Integrated Polypyrrole@Sulfur@Graphene Aerogel 3D Architecture via Advanced Vapor Polymerization for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 18448-18455.	4.0	53
255	Easy preparation of SnO ₂ @carbon composite nanofibers with improved lithium ion storage properties. Journal of Materials Research, 2010, 25, 1516-1524.	1.2	52
256	Self-Assembled Sandwich-like Vanadium Oxide/Graphene Mesoporous Composite as High-Capacity Anode Material for Lithium Ion Batteries. Inorganic Chemistry, 2015, 54, 11799-11806.	1.9	52
257	Understanding Rechargeable Battery Function Using In Operando Neutron Powder Diffraction. Advanced Materials, 2020, 32, e1904528.	11.1	52
258	Crystallographicâ€Siteâ€Specific Structural Engineering Enables Extraordinary Electrochemical Performance of Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Spinel Cathodes for Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2101413.	11.1	52
259	Novel ionic liquid supported synthesis of platinum-based electrocatalysts on multiwalled carbon nanotubes. Electrochemistry Communications, 2006, 8, 245-250.	2.3	51
260	Reversible hydrogen storage in titanium-catalyzed LiAlH4–LiBH4 system. Journal of Alloys and Compounds, 2009, 487, 434-438.	2.8	51
261	A facile synthesis approach to micro–macroporous carbon from cotton and its application in the lithium–sulfur battery. RSC Advances, 2014, 4, 65074-65080.	1.7	50
262	High rate capability core–shell lithium titanate@ceria nanosphere anode material synthesized by one-pot co-precipitation for lithium-ion batteries. Journal of Power Sources, 2014, 257, 280-285.	4.0	50
263	In situ fabrication of three-dimensional nitrogen and boron co-doped porous carbon nanofibers for high performance lithium-ion batteries. Journal of Power Sources, 2016, 324, 294-301.	4.0	50
264	Designing a hybrid electrode toward high energy density with a staged Li ⁺ and PF ₆ ^{â^'} deintercalation/intercalation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2815-2823.	3.3	50
265	TiO 2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries. Energy, 2014, 75, 597-602.	4.5	49
266	Simple in situ synthesis of carbon-supported and nanosheet-assembled vanadium oxide for ultra-high rate anode and cathode materials of lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 13907-13915.	5.2	49
267	Approaching Highâ€Performance Supercapacitors via Enhancing Pseudocapacitive Nickel Oxideâ€Based Materials. Advanced Sustainable Systems, 2020, 4, 1900137.	2.7	49
268	Polyoxometallate-stabilized Pt–Ru catalysts on multiwalled carbon nanotubes: Influence of preparation conditions on the performance of direct methanol fuel cells. Journal of Power Sources, 2008, 184, 361-369.	4.0	48
269	Reversible Hydrogen Storage in Destabilized LiAlH ₄ â^'MgH ₂ â^'LiBH ₄ Ternary-Hydride System Doped with TiF ₃ . Journal of Physical Chemistry C, 2010, 114, 11643-11649.	1.5	48
270	Bioinspired Carbon/SnO ₂ Composite Anodes Prepared from a Photonic Hierarchical Structure for Lithium Batteries. ACS Applied Materials & Structure for Lithium Batteries. ACS Applied Materials & Structure for Lithium Batteries.	4.0	48

#	Article	IF	Citations
271	Encapsulation of Fe3O4 Nanoparticles into N, S co-Doped Graphene Sheets with Greatly Enhanced Electrochemical Performance. Scientific Reports, 2016, 6, 27957.	1.6	48
272	Grapheneâ€Tailored Thermodynamics and Kinetics to Fabricate Metal Borohydride Nanoparticles with High Purity and Enhanced Reversibility. Advanced Energy Materials, 2018, 8, 1702975.	10.2	48
273	Recent Progress and Future Advances on Aqueous Monovalent″on Batteries towards Safe and Highâ€Power Energy Storage. Advanced Materials, 2022, 34, e2107965.	11.1	48
274	Synthesis of LiFe1 \hat{a} 'xNixPO4/C composites and their electrochemical performance. Journal of Power Sources, 2009, 194, 786-793.	4.0	47
275	Preparation and characterization of core–shell structure Fe3O4/C nanoparticles with unique stability and high electrochemical performance for lithium-ion battery anode material. Electrochimica Acta, 2011, 56, 9233-9239.	2.6	47
276	Synthesis and electrochemical properties of ZnMn 2 O 4 anode for lithium-ion batteries. Electrochimica Acta, 2015, 178, 847-855.	2.6	47
277	Plum-branch-like carbon nanofibers decorated with SnO2 nanocrystals. Nanoscale, 2010, 2, 1011.	2.8	46
278	In situ synthesis of ultra-fine, porous, tin oxide-carbon nanocomposites via a molten salt method for lithium-ion batteries. Journal of Power Sources, 2010, 195, 5382-5386.	4.0	45
279	Self-assembly of [101ì,,0] grown ZnO nanowhiskers with exposed reactive (0001) facets on hollow spheres and their enhanced gas sensitivity. CrystEngComm, 2011, 13, 3425.	1.3	45
280	Facile Synthesis of Coaxial CNTs/MnOx-Carbon Hybrid Nanofibers and Their Greatly Enhanced Lithium Storage Performance. Scientific Reports, 2015, 5, 17473.	1.6	45
281	Large-scale synthesis of ternary Sn5SbP3/C composite by ball milling for superior stable sodium-ion battery anode. Electrochimica Acta, 2017, 235, 107-113.	2.6	45
282	Eliminating Transition Metal Migration and Anionic Redox to Understand Voltage Hysteresis of Lithiumâ€Rich Layered Oxides. Advanced Energy Materials, 2020, 10, 1903634.	10.2	45
283	Time-Dependent in-Situ Neutron Diffraction Investigation of a Li(Co _{0.16} Mn _{1.84})O ₄ Cathode. Journal of Physical Chemistry C, 2011, 115, 21473-21480.	1.5	44
284	KO.25Mn2O4nanofiber microclusters as high power cathode materials for rechargeable lithium batteries. RSC Advances, 2012, 2, 1643-1649.	1.7	44
285	Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries. RSC Advances, 2013, 3, 5003.	1.7	44
286	Walnut shell $\hat{a}\in$ Derived activated carbon: Synthesis and its application in the sulfur cathode for lithium $\hat{a}\in$ sulfur batteries. Journal of Alloys and Compounds, 2017, 718, 373-378.	2.8	44
287	Spray-pyrolyzed silicon/disordered carbon nanocomposites for lithium-ion battery anodes. Journal of Power Sources, 2007, 174, 823-827.	4.0	43
288	Submicron-sized cube-like \hat{I}_{\pm} -Fe2O3 agglomerates as an anode material for Li-ion batteries. Electrochimica Acta, 2010, 55, 8521-8526.	2.6	43

#	Article	IF	Citations
289	Improvement of the LiAlH4â^'NaBH4 System for Reversible Hydrogen Storage. Journal of Physical Chemistry C, 2009, 113, 10813-10818.	1.5	42
290	Encapsulation of TiO2(B) nanowire cores into SnO2/carbon nanoparticle shells and their high performance in lithium storage. Nanoscale, 2011, 3, 4440.	2.8	42
291	TiO2(B)@anatase hybrid nanowires with highly reversible electrochemical performance. Electrochemistry Communications, 2011, 13, 46-49.	2.3	42
292	Synthesis and electrochemical properties of MoO3/C nanocomposite. Electrochimica Acta, 2013, 93, 101-106.	2.6	42
293	Surfaceâ€Electron Coupling for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2019, 58, 17709-17717.	7.2	42
294	LiFePO ₄ Particles Embedded in Fast Bifunctional Conductor rGO&C@Li ₃ V ₂ (PO ₄) ₃ Nanosheets as Cathodes for Highâ€Performance Liâ€Ion Hybrid Capacitors. Advanced Functional Materials, 2019, 29, 1807895.	7.8	42
295	Polysulfide Filter and Dendrite Inhibitor: Highly Graphitized Wood Framework Inhibits Polysulfide Shuttle and Lithium Dendrites in Li–S Batteries. Advanced Functional Materials, 2021, 31, 2102458.	7.8	42
296	Improved Hydrogen Storage Properties of NaBH ₄ Destabilized by CaH ₂ and Ca(BH ₄) ₂ . Journal of Physical Chemistry C, 2011, 115, 9283-9290.	1.5	41
297	Combined effects of hydrogen back-pressure andÂNbF5 addition on the dehydrogenation and rehydrogenation kinetics of the LiBH4–MgH2 composite system. International Journal of Hydrogen Energy, 2013, 38, 3650-3660.	3.8	41
298	Potassiumâ€sulfur batteries: Status and perspectives. EcoMat, 2020, 2, e12038.	6.8	41
299	Ultrathin Fewâ€Layer GeP Nanosheets via Lithiationâ€Assisted Chemical Exfoliation and Their Application in Sodium Storage. Advanced Energy Materials, 2020, 10, 1903826.	10.2	41
300	Li ₂ Sâ€Based Liâ€lon Sulfur Batteries: Progress and Prospects. Small, 2021, 17, e1903934.	5.2	41
301	Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction. Physical Chemistry Chemical Physics, 2012, 14, 3634.	1.3	40
302	Highly reversible lithium storage in uniform Li4Ti5O12/carbon hybrid nanowebs asÂanode material for lithium-ion batteries. Energy, 2013, 55, 925-932.	4.5	40
303	Hydrothermal growth of MnO ₂ /RGO/Ni(OH) ₂ on nickel foam with superior supercapacitor performance. RSC Advances, 2015, 5, 62571-62576.	1.7	40
304	Encapsulating MnSe Nanoparticles Inside 3D Hierarchical Carbon Frameworks with Lithium Storage Boosted by in Situ Electrochemical Phase Transformation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33022-33032.	4.0	40
305	Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 1841-1846.	1.2	39
306	Improved hydrogen sorption performance of NbF5-catalysed NaAlH4. International Journal of Hydrogen Energy, 2011, 36, 14503-14511.	3.8	39

#	Article	IF	Citations
307	Synthesis and electrochemical properties of spinel Li4Ti5O12â^'x Cl x anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 2011-2016.	1.2	39
308	Preparation and electrochemical properties of high-capacity LiFePO4–Li3V2(PO4)3/C composite for lithium-ion batteries. Journal of Power Sources, 2014, 246, 912-917.	4.0	39
309	Synthesis of catalyzed magnesium hydride with low absorption/desorption temperature. Scripta Materialia, 2009, 61, 469-472.	2.6	38
310	Heterogeneous ZnS hollow urchin-like hierarchical nanostructures and their structure-enhanced photocatalytic properties. Nanoscale, 2011, 3, 1470.	2.8	38
311	Coaxial-cable structure composite cathode material with high sulfur loading for high performance lithium–sulfur batteries. Journal of Power Sources, 2015, 274, 338-344.	4.0	38
312	Insight into the improved cycling stability of sphere-nanorod-like micro-nanostructured high voltage spinel cathode for lithium-ion batteries. Nano Energy, 2019, 66, 104100.	8.2	38
313	Lithium insertion in Si–TiC nanocomposite materials produced by high-energy mechanical milling. Journal of Power Sources, 2005, 146, 190-194.	4.0	37
314	Mixed-metal (Li, Al) amidoborane: synthesis and enhanced hydrogen storage properties. Journal of Materials Chemistry A, 2013, 1, 1810-1820.	5.2	37
315	Templateâ€Free Selfâ€Caging Nanochemistry for Largeâ€Scale Synthesis of Sulfonatedâ€Graphene@Sulfur Nanocage for Longâ€Life Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2008652.	7.8	37
316	Titania nanotube supported tin anodes for lithium intercalation. Electrochemistry Communications, 2007, 9, 697-702.	2.3	36
317	Noticeable improvement in the desorption temperature from graphite in rehydrogenated MgH2/graphite composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 447, 180-185.	2.6	36
318	LiCoO2 cathode thin film fabricated by RF sputtering for lithium ion microbatteries. Surface and Coatings Technology, 2010, 204, 1710-1714.	2.2	36
319	Highly porous metal oxide polycrystalline nanowire films with superior performance in gas sensors. Journal of Materials Chemistry, 2011, 21, 11412.	6.7	36
320	V 2 O 5 /Mesoporous Carbon Composite as a Cathode Material for Lithium-ion Batteries. Electrochimica Acta, 2015, 173, 172-177.	2.6	36
321	Self-supported Zn3P2 nanowires-assembly bundles grafted on Ti foil as an advanced integrated electrodes for lithium/sodium ion batteries with high performances. Journal of Alloys and Compounds, 2017, 724, 932-939.	2.8	36
322	Synthesis and electrochemical properties of ZnMn2O4 microspheres for lithium-ion battery application. Journal of Alloys and Compounds, 2017, 690, 72-79.	2.8	36
323	Synthesis of porous Co3O4/C nanoparticles as anode for Li-ion battery application. Applied Surface Science, 2018, 443, 401-406.	3.1	36
324	Chain engineering of carbonyl polymers for sustainable lithium-ion batteries. Materials Today, 2021, 50, 170-198.	8.3	36

#	Article	IF	Citations
325	Polypyrrole as cathode materials for Zn-polymer battery with various biocompatible aqueous electrolytes. Electrochimica Acta, 2013, 95, 212-217.	2.6	35
326	Evidence of Solid-Solution Reaction upon Lithium Insertion into Cryptomelane K _{0.25} Mn ₂ O ₄ Material. Journal of Physical Chemistry C, 2014, 118, 3976-3983.	1.5	35
327	Facile low-temperature synthesis of hematite quantum dots anchored on a three-dimensional ultra-porous graphene-like framework as advanced anode materials for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 11247-11255.	5.2	35
328	Two-dimensional dysprosium-modified bamboo-slip-like lithium titanate with high-rate capability and long cycle life for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17782-17790.	5.2	35
329	Synthesis of Cu2ZnSnS4 as Novel Anode material for Lithium-ion Battery. Electrochimica Acta, 2016, 190, 703-712.	2.6	35
330	Directly grown nanostructured electrodes for high-power and high-stability alkaline nickel/bismuth batteries. Science China Materials, 2019, 62, 487-496.	3.5	35
331	Accelerated Polysulfide Redox in Binderâ€Free Li ₂ S Cathodes Promises Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2100957.	10.2	35
332	Preparation of orthorhombic LiMnO2 material via the sol–gel process. Journal of Power Sources, 2003, 119-121, 221-225.	4.0	34
333	Stabilization of NaZn(BH ₄) ₃ via nanoconfinement in SBA-15 towards enhanced hydrogen release. Journal of Materials Chemistry A, 2013, 1, 250-257.	5.2	34
334	Mass production of three-dimensional hierarchical microfibers constructed from silicon–carbon core–shell architectures with high-performance lithium storage. Carbon, 2014, 72, 169-175.	5.4	34
335	Ammonia borane confined by nitrogen-containing carbon nanotubes: enhanced dehydrogenation properties originating from synergetic catalysis and nanoconfinement. Journal of Materials Chemistry A, 2015, 3, 20494-20499.	5.2	34
336	Ultrafast Li-ion migration in holey-graphene-based composites constructed by a generalized <i>ex situ</i> method towards high capacity energy storage. Journal of Materials Chemistry A, 2019, 7, 4788-4796.	5.2	34
337	Polyoxometallate-stabilized platinum catalysts on multi-walled carbon nanotubes for fuel cell applications. Electrochimica Acta, 2008, 53, 6410-6416.	2.6	33
338	Preparation and Characteristics of LiFePO4 Thin Film by Radio Frequency Magnetron Sputtering for Lithium Microbatteries. Journal of Physical Chemistry C, 2009, 113, 14518-14522.	1.5	33
339	Synthesis and Characterization of Cobalt-Doped WS2 Nanorods for Lithium Battery Applications. Nanoscale Research Letters, 2010, 5, 1301-1306.	3.1	33
340	Solvothermal synthesis of Mn2P2O7 and its application in lithium-ion battery. Materials Letters, 2011, 65, 3265-3268.	1.3	33
341	MnO 2 -introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors. Chemical Engineering Journal, 2017, 320, 634-643.	6.6	33
342	High-rate and durable sulfide-based all-solid-state lithium battery with in situ Li2O buffering. Energy Storage Materials, 2022, 51, 306-316.	9.5	33

#	Article	IF	Citations
343	Non-aqueous synthesis of crystalline Co3O4 powders using alcohol and cobalt chloride as a versatile reaction system for controllable morphology. Journal of Power Sources, 2005, 147, 264-268.	4.0	32
344	Layered Î'-MnO2 as positive electrode for lithium intercalation. Materials Letters, 2011, 65, 1319-1322.	1.3	32
345	TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	32
346	One-dimensional nanostructured design of Li _{1+x} (Mn _{1/3} Ni _{1/3} Fe _{1/3})O ₂ as a dual cathode for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 250-257.	5.2	32
347	SnSb/Graphene Composite as Anode Materials for Lithium Ion Batteries. Advanced Science Letters, 2011, 4, 18-23.	0.2	32
348	Synthesis and electrochemical properties of LiY0.1V3O8. Journal of Power Sources, 2007, 174, 548-551.	4.0	31
349	Solvothermal synthesis and electrochemical performance of hollow LiFePO4 nanoparticles. Journal of Alloys and Compounds, 2015, 640, 95-100.	2.8	31
350	Electrochemical hydrogen storage properties of nonstoichiometric amorphous MgNi1+xMgNi1+x–carbon composites (x=0.05x=0.05–0.3). International Journal of Hydrogen Energy, 2006, 31, 2032-2039.	3.8	30
351	Nanoconfinement significantly improves the thermodynamics and kinetics of co-infiltrated 2LiBH4–LiAlH4 composites: Stable reversibility of hydrogen absorption/resorption. Acta Materialia, 2013, 61, 6882-6893.	3.8	30
352	Oxygenâ€free Layerâ€byâ€Layer Assembly of Lithiated Composites on Graphene for Advanced Hydrogen Storage. Advanced Science, 2017, 4, 1600257.	5.6	30
353	Improvement in capacity retention of cathode material for high power density lithium ion batteries: The route of surface coating. Applied Energy, 2017, 194, 540-548.	5.1	30
354	An amorphous Zn–P/graphite composite with chemical bonding for ultra-reversible lithium storage. Journal of Materials Chemistry A, 2019, 7, 16785-16792.	5.2	30
355	Rechargeable Potassium–Selenium Batteries. Advanced Functional Materials, 2021, 31, 2102326.	7.8	30
356	Organic electrolyte design for practical potassium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 19090-19106.	5.2	30
357	Ultranarrow Bandgap Seâ€Deficient Bimetallic Selenides for High Performance Alkali Metalâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	7.8	30
358	Optimizing synthesis of silicon/disordered carbon composites for use as anode materials in lithium-ion batteries. Journal of Power Sources, 2006, 159, 332-335.	4.0	29
359	Three-dimensional Li2O–NiO–CoO composite thin-film anode with network structure for lithium-ion batteries. Journal of Power Sources, 2009, 189, 566-570.	4.0	29
360	Electrochemical properties of \hat{l}_{\pm} -Fe2O3 /MWCNTs as anode materials for lithium-ion batteries. Solid State lonics, 2011, 201, 54-59.	1.3	29

#	Article	IF	CITATIONS
361	Flexible cellulose based polypyrrole–multiwalled carbon nanotube films for bio-compatible zinc batteries activated by simulated body fluids. Journal of Materials Chemistry A, 2013, 1, 14300.	5.2	29
362	Ni(OH)2 nanoflakes supported on 3D hierarchically nanoporous gold/Ni foam as superior electrodes for supercapacitors. Science China Materials, 2018, 61, 353-362.	3. 5	29
363	Uniform Polypyrrole Layer-Coated Sulfur/Graphene Aerogel via the Vapor-Phase Deposition Technique as the Cathode Material for Li–S Batteries. ACS Applied Materials & 1, 5958-5967.	4.0	29
364	Flexible free-standing sulfurized polyacrylonitrile electrode for stable Li/Na storage. Electrochimica Acta, 2020, 333, 135493.	2.6	29
365	Synchrotron Xâ€Ray Absorption Spectroscopy and Electrochemical Study of Bi ₂ O ₂ Se Electrode for Lithiumâ€/Potassiumâ€/on Storage. Advanced Energy Materials, 2021, 11, 2100185.	10.2	29
366	Regulating Polysulfide Diffusion and Deposition via Rational Design of Core–Shell Active Materials in Li–S Batteries. ACS Nano, 2022, 16, 7982-7992.	7.3	29
367	Nickel–cobalt oxides/carbon nanoflakes as anode materials for lithium-ion batteries. Materials Research Bulletin, 2009, 44, 140-145.	2.7	28
368	A Fe/Fe ₃ O ₄ /N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries. Dalton Transactions, 2015, 44, 4594-4600.	1.6	28
369	Multiple Anionic Transition-Metal Oxycarbide for Better Lithium Storage and Facilitated Multielectron Reactions. ACS Nano, 2019, 13, 11665-11675.	7.3	28
370	Synthesis of porous MoV2O8 nanosheets as anode material for superior lithium storage. Energy Storage Materials, 2019, 22, 128-137.	9.5	28
371	A CoSe–C@C core–shell structure with stable potassium storage performance realized by an effective solid electrolyte interphase layer. Journal of Materials Chemistry A, 2021, 9, 11397-11404.	5.2	28
372	A GBH/LiBH4 coordination system with favorable dehydrogenation. Journal of Materials Chemistry, 2011, 21, 7138.	6.7	27
373	Nitrogen-containing carbon nanostructures: A promising carrier for catalysis of ammonia borane dehydrogenation. Carbon, 2014, 68, 462-472.	5.4	27
374	Synthesis and electrochemical performances of MoS 2 /C fibers as anode material for lithium-ion battery. Materials Letters, 2016, 164, 595-598.	1.3	27
375	Growth of Lithium Lanthanum Titanate Nanosheets and Their Application in Lithium-Ion Batteries. ACS Applied Materials & Damp; Interfaces, 2016, 8, 1486-1492.	4.0	27
376	Nano-sized cathode material LiMn0.5Fe0.5PO4/C synthesized via improved sol-gel routine and its magnetic and electrochemical properties. Electrochimica Acta, 2017, 255, 205-211.	2.6	27
377	Rational design of hybrid porous nanotubes with robust structure of ultrafine Li4Ti5O12 nanoparticles embedded in bamboo-like CNTs for superior lithium ion storage. Journal of Materials Chemistry A, 2018, 6, 3342-3349.	5.2	27
378	In Situ Chelating Synthesis of Hierarchical LiNi _{1/3} O ₂ Polyhedron Assemblies with Ultralong Cycle Life for Liâ€lon Batteries. Small, 2018, 14, e1704354.	5.2	27

#	Article	IF	CITATIONS
379	The effects of FEC (fluoroethylene carbonate) electrolyte additive on the lithium storage properties of NiO (nickel oxide) nanocuboids. Energy, 2013, 58, 707-713.	4.5	26
380	Electrochemistry and structure of the cobalt-free Li _{1+x} MO ₂ (M = Li, Ni, Mn,) Tj ETQq0	0 Q.rgBT /0	Overlock 10 1
381	Hierarchical Structural Evolution of Zn ₂ GeO ₄ in Binary Solvent and Its Effect on Li-ion Storage Performance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9778-9784.	4.0	26
382	Design and tailoring of carbon-Al2O3 double coated nickel-based cation-disordered cathodes towards high-performance Li-ion batteries. Nano Energy, 2022, 96, 107071.	8.2	26
383	Introducing 4 <i>>s</i> àê"2 <i>p</i> Orbital Hybridization to Stabilize Spinel Oxide Cathodes for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
384	Three-dimensional reticular tin–manganese oxide composite anode materials for lithium ion batteries. Electrochimica Acta, 2010, 55, 4982-4986.	2.6	25
385	Enhanced hydrogen sorption properties in the LiBH4–MgH2 system catalysed by Ru nanoparticles supported on multiwalled carbon nanotubes. Journal of Alloys and Compounds, 2011, 509, 5012-5016.	2.8	25
386	Enhanced hydrogen storage properties of NaAlH4co-catalysed with niobium fluoride and single-walled carbon nanotubes. RSC Advances, 2012, 2, 1569-1576.	1.7	25
387	Nano-confined multi-synthesis of a Li–Mg–N–H nanocomposite towards low-temperature hydrogen storage with stable reversibility. Journal of Materials Chemistry A, 2015, 3, 12646-12652.	5.2	25
388	Guanidinium octahydrotriborate: an ionic liquid with high hydrogen storage capacity. Journal of Materials Chemistry A, 2015, 3, 11411-11416.	5.2	25
389	<i>In situ</i> incorporation of nanostructured antimony in an N-doped carbon matrix for advanced sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12842-12850.	5. 2	25
390	In Situ Synchrotron Xâ€Ray Absorption Spectroscopy Studies of Anode Materials for Rechargeable Batteries. Batteries and Supercaps, 2021, 4, 1547-1566.	2.4	25
391	Structure and electrochemical characteristics of LiMn0.7M0.3O2 (M=Ti, V, Zn, Mo, Co, Mg, Cr). Journal of Alloys and Compounds, 2003, 348, 231-235.	2.8	24
392	Novel three-dimensional tin/carbon hybrid core/shell architecture with large amount of solid cross-linked micro/nanochannels for lithium ion battery application. Energy, 2015, 82, 960-967.	4.5	24
393	Lowâ€Coordinate Step Atoms via Plasmaâ€Assisted Calcinations to Enhance Electrochemical Reduction of Nitrogen to Ammonia. Small, 2020, 16, e2000421.	5.2	24
394	Synthesis of Layered-Structure LiMn[sub $1\hat{a}^2x$]Cr[sub x]O[sub 2] by the Pechini Method and Characterization as a Cathode for Rechargeable Li/LiMnO[sub 2] Cells. Journal of the Electrochemical Society, 2002, 149, A792.	1.3	23
395	Hydrazine bisborane as a promising material for chemical hydrogen storage. International Journal of Hydrogen Energy, 2011, 36, 13640-13644.	3.8	23
396	Preparation and characterization of high-rate and long-cycle LiFePO4/C nanocomposite as cathode material for lithium-ion battery. Journal of Solid State Electrochemistry, 2012, 16, 17-24.	1.2	23

#	Article	IF	Citations
397	Synthesis and electrochemical properties of FeCO 3 with different morphology for lithium-ion battery application. Journal of Alloys and Compounds, 2017, 698, 87-93.	2.8	23
398	Synergistic Inorganic–Organic Dual-Additive Electrolytes Enable Practical High-Voltage Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10447-10456.	4.0	23
399	LiMn2O4 cathode materials synthesized by the cellulose–citric acid method for lithium ion batteries. Journal of Power Sources, 2006, 158, 608-613.	4.0	22
400	Synthesis and characterization of tin dioxide/multiwall carbon nanotube composites. Journal of Alloys and Compounds, 2010, 504, 457-461.	2.8	22
401	Synthesis and properties of Li–Ti–O spinel (LiTi2O4). Journal of Alloys and Compounds, 2009, 478, 767-770.	2.8	21
402	Dehydrogenation Promotion of LiBH $<$ sub $>4sub>\hat{A}\cdotNH<sub>3sub> Through Heating in Ammonia or Mixing with Metal Hydrides. Journal of Physical Chemistry C, 2010, 114, 12823-12827.$	1.5	21
403	Microwaveâ€assisted Synthesis of Flowerâ€like Structure ϵâ€MnO ₂ as Cathode for Lithium Ion Batteries. Journal of the Chinese Chemical Society, 2012, 59, 1211-1215.	0.8	21
404	Unique Urchin-like Ca2Ge7O16 Hierarchical Hollow Microspheres as Anode Material for the Lithium lon Battery. Scientific Reports, 2015, 5, 11326.	1.6	21
405	Potholeâ€rich Ultrathin WO ₃ Nanosheets that Trigger N≡N Bond Activation of Nitrogen for Direct Nitrate Photosynthesis. Angewandte Chemie, 2019, 131, 741-745.	1.6	21
406	Synthesis and electrochemical properties of nanostructured LiAl x Mn2 â^' x O4 â^' y Br y partion of Solid State Electrochemistry, 2009, 13, 799-805.	cles. Journ	al ₂₀
407	Synthesis and electrochemical properties of non-stoichiometric Li–Mn-spinel (Li1.02MxMn1.95O4â^'yFy) for lithium ion battery application. Electrochimica Acta, 2012, 61, 87-93.	2.6	20
408	Improved rate capability and cycling stability of novel terbium-doped lithium titanate for lithium-ion batteries. Electrochimica Acta, 2016, 210, 935-941.	2.6	20
409	High-Performance Hydrogen Storage Nanoparticles Inside Hierarchical Porous Carbon Nanofibers with Stable Cycling. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15502-15509.	4.0	20
410	Synthesis and Performance of Tungsten Disulfide/Carbon (WS2/C) Composite as Anode Material. Journal of Electronic Materials, 2018, 47, 251-260.	1.0	20
411	Elucidation of the high-voltage phase in the layered sodium ion battery cathode material P3–Na _{0.5} Ni _{0.25} Mn _{0.75} O ₂ . Journal of Materials Chemistry A, 2020, 8, 21151-21162.	5.2	20
412	Rational design of perfect interface coupling to boost electrocatalytical oxygen reduction. Nano Energy, 2020, 76, 105055.	8.2	20
413	A Long Cycleâ€Life Highâ€Voltage Spinel Lithiumâ€lon Battery Electrode Achieved by Siteâ€6elective Doping. Angewandte Chemie, 2020, 132, 10681-10689.	1.6	20
414	Natural Soft/Rigid Superlattices as Anodes for Highâ€Performance Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 17494-17498.	7.2	20

#	Article	IF	Citations
415	Constructing Layered Nanostructures from Nonâ€Layered Sulfide Crystals via Surface Charge Manipulation Strategy. Advanced Functional Materials, 2021, 31, 2101676.	7.8	20
416	In situ fabrication of spherical porous tin oxide via a spray pyrolysis technique. Electrochimica Acta, 2006, 51, 3680-3684.	2.6	19
417	Sodium borohydride hydrazinates: synthesis, crystal structures, and thermal decomposition behavior. Journal of Materials Chemistry A, 2015, 3, 11269-11276.	5.2	19
418	An improved synthesis of unsolvated NaB 3 H 8 and its application in preparing Na 2 B 12 H 12. International Journal of Hydrogen Energy, 2016, 41, 15471-15476.	3.8	19
419	A Strategy for Configuration of an Integrated Flexible Sulfur Cathode for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 4060-4064.	1.6	19
420	<i>In situ</i> formation of a carbon fiber@Ni ₃ S ₂ non-woven electrode with ultrahigh areal and volumetric capacitance. Journal of Materials Chemistry A, 2017, 5, 23476-23480.	5.2	19
421	Progress and Perspective on Rechargeable Magnesium–Sulfur Batteries. Small Methods, 2021, 5, e2001303.	4.6	19
422	Enabling Atomicâ€Scale Imaging of Sensitive Potassium Metal and Related Solid Electrolyte Interphases Using Ultralowâ€Dose Cryoâ€₹EM. Advanced Materials, 2021, 33, e2102666.	11.1	19
423	Tuning Mixed Electronic/Ionic Conductivity of 2D CdPS ₃ Nanosheets as an Anode Material by Synergistic Intercalation and Vacancy Engineering. Advanced Functional Materials, 2022, 32, .	7.8	19
424	Multiple-ion-doped lithium nickel oxides as cathode materials for lithium-ion batteries. Journal of Power Sources, 2003, 119-121, 189-194.	4.0	18
425	Improvement in hydrogen cycling properties of magnesium through added graphite. Materials Letters, 2007, 61, 3163-3166.	1.3	18
426	Synthesis and electrochemical properties of nanosized carbon-coated Li1â^3x La x FePO4 composites. Journal of Solid State Electrochemistry, 2010, 14, 889-895.	1.2	18
427	Improved reversible dehydrogenation of 2LiBH ₄ +MgH ₂ system by introducing Ni nanoparticles. Journal of Materials Research, 2011, 26, 1143-1150.	1.2	18
428	Fe3O4 fuzzy spheroids as anode materials for lithium-ion batteries. Materials Letters, 2012, 71, 151-153.	1.3	18
429	Rational synthesis of MnO2@CMK/S composite as cathode materials for lithium–sulfur batteries. Materials Letters, 2017, 195, 236-239.	1.3	18
430	Creating fast ion conducting composites via in-situ introduction of titanium as oxygen getter. Nano Energy, 2018, 49, 549-554.	8.2	18
431	Encapsulation of BiOCl nanoparticles in N-doped carbon nanotubes as a highly efficient anode for potassium ion batteries. Nanoscale, 2022, 14, 5814-5823.	2.8	18
432	Synthesis and electrochemical performance of LiCr \times Mn2- \times O4(\times =0,0.02,0.05,0.08,0.10) powders by ultrasonic coprecipitation. Journal of Solid State Electrochemistry, 2006, 10, 929-933.	1.2	17

#	Article	IF	CITATIONS
433	Effects of substituting Cu for Sn on the microstructure and hydrogen absorption properties of Co-free AB5 alloys. International Journal of Hydrogen Energy, 2016, 41, 17022-17028.	3.8	17
434	Synthesis and optical properties of ultra-fine Sr5Al2O8:Eu3+ nanorod phosphor from a low-heating-temperature solid-state precursor method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 145, 23-27.	1.7	16
435	Morphology Tunable Selfâ€Assembled <scp><scp>Sr< scp><scp><scp></scp></scp></scp></scp>	sub>7 <td>ub>:<scp> <s0 16</s0 </scp></td>	ub>: <scp> <s0 16</s0 </scp>
436	Hierarchical Porous Li2Mg(NH)2@C Nanowires with Long Cycle Life Towards Stable Hydrogen Storage. Scientific Reports, 2014, 4, 6599.	1.6	16
437	Facile synthesis of nickel-foam-based nano-architectural composites as binder-free anodes for high capacity Li-ion batteries. Journal of Power Sources, 2016, 304, 311-318.	4.0	16
438	An Intrinsically Nonâ€flammable Electrolyte for Highâ€Performance Potassium Batteries. Angewandte Chemie, 2020, 132, 3667-3673.	1.6	16
439	Synergistic effect of lithiophilic Zn nanoparticles and N-doping for stable Li metal anodes. Journal of Energy Chemistry, 2022, 65, 439-447.	7.1	16
440	Tetraethoxysilane as a new facilitative film-forming additive for the lithium-ion battery with LiMn2O4 cathode. Solid State Ionics, 2013, 232, 19-23.	1.3	15
441	Well-dispersed lithium amidoborane nanoparticles through nanoreactor engineering for improved hydrogen release. Nanoscale, 2014, 6, 12333-12339.	2.8	15
442	Ammonium Aminodiboranate: A Longâ€6ought Isomer of Diammoniate of Diborane and Ammonia Borane Dimer. Chemistry - A European Journal, 2016, 22, 7727-7729.	1.7	15
443	Synthesis of hierarchical mesoporous lithium nickel cobalt manganese oxide spheres with high rate capability for lithium-ion batteries. Applied Surface Science, 2018, 428, 1036-1045.	3.1	15
444	Hierarchical Porous NiO/βâ€NiMoO ₄ Heterostructure as Superior Anode Material for Lithium Storage. ChemPlusChem, 2018, 83, 915-923.	1.3	15
445	Preparation of spherical clusters of metal oxide nanorods and their hydrogen storage behavior. Materials Letters, 2006, 60, 3891-3894.	1.3	14
446	Peashell-like nanostructure—a new kind of one-dimensional nanostructure: the case of magnesium oxide. Chemical Communications, 2010, 46, 3887.	2.2	14
447	Three-dimensional nanocarbon and the electrochemistry of nanocarbon/tin oxide for lithium ion batteries. Journal of Solid State Electrochemistry, 2011, 15, 2645-2652.	1.2	14
448	Graphene-tailored molecular bonds for advanced hydrogen and lithium storage performance. Energy Storage Materials, 2019, 17, 178-185.	9.5	14
449	Zn(Cu)Si ₂₊ <i>_x</i> P ₃ Solid Solution Anodes for Highâ€Performance Liâ€ion Batteries with Tunable Working Potentials. Advanced Functional Materials, 2019, 29, 1903638.	7.8	14
450	Structure and electrochemistry of LiCrxMn1â^'xO2 cathode for lithium-ion batteries. Solid State lonics, 2002, 148, 359-366.	1.3	13

#	Article	IF	CITATIONS
451	Start-Fine-Particle Carbon-enriched Li0.98Mg0.02FePO4 Synthesized by A Novel Modified Solid-State Reaction. Synthetic Metals, 2005, 153, 113-116.	2.1	13
452	Preparation and characterization of spinel Li4Ti5O12 nanoparticles anode materials for lithium ion battery. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	13
453	Reversible storage of hydrogen in NaF–MB2 (M = Mg, Al) composites. Journal of Materials Chemistry A, 2013, 1, 2806.	5.2	13
454	Rapid microwave-assisted synthesis of various MnO2 nanostructures and their magnetic properties. Materials Chemistry and Physics, 2015, 166, 42-48.	2.0	13
455	Regeneration of alkaline metal amidoboranes with high purity. International Journal of Hydrogen Energy, 2016, 41, 407-412.	3.8	13
456	Synergetic Effects toward Catalysis and Confinement of Magnesium Hydride on Modified Graphene: A First-Principles Study. Journal of Physical Chemistry C, 2017, 121, 18401-18411.	1.5	13
457	Tri-functional coating to enhance the capacity retention of LiNi 0.5 Mn 1.5 O 4 for high power lithium ion battery. Materials Letters, 2018, 214, 68-71.	1.3	13
458	Enhanced lithium storage for MoS2-based composites via a vacancy-assisted method. Applied Surface Science, 2020, 515, 146103.	3.1	13
459	Revealing the mechanism of saturated ether electrolyte for improving the long-cycling stability of Na-O2 batteries. Nano Energy, 2021, 84, 105927.	8.2	13
460	Constructing ultrastable electrode/electrolyte interface for rapid potassium ion storage capability via salt chemistry and interfacial engineering. Nano Research, 2022, 15, 2083-2091.	5.8	13
461	Studies on a Novel Secondary Battery:  MH  / MnO2 Rechargeable Battery: II. Characteristics of Cathode. Journal of the Electrochemical Society, 1997, 144, L213-L216.	the 1.3	12
462	Electrochemical properties of orthorhombic LiMnO2 prepared by one-step middle-temperature solid-state reaction. Journal of Alloys and Compounds, 2002, 346, 255-259.	2.8	12
463	Studies on electrochemical performance of partially reduced MnO2 used as cathode for MH–MnO2 rechargeable battery. Journal of Power Sources, 2002, 109, 11-16.	4.0	12
464	A novel silver oxide electrode and its charge–discharge performance. Journal of Applied Electrochemistry, 2002, 32, 275-279.	1.5	12
465	Nanostructured NiO/C Composite for Lithium-lon Battery Anode. Journal of Nanoscience and Nanotechnology, 2009, 9, 1951-1955.	0.9	12
466	Preparation and electrochemical performance of hollow-spherical polypyrrole/V2O5 composite. Transactions of Nonferrous Metals Society of China, 2011, 21, 1303-1308.	1.7	12
467	Synthesis and electrochemical performances of Mn x Co y Ni z CO 3 as novel anode material. Ceramics International, 2016, 42, 7888-7894.	2.3	12
468	Improved rate and cycle performance of nano-sized 5LiFePO 4 ·Li 3 V 2 (PO 4) 3 /C via high-energy ball milling assisted carbothermal reduction. Journal of Alloys and Compounds, 2017, 719, 281-287.	2.8	12

#	Article	IF	CITATIONS
469	Effect of AlF3-Coated Li4Ti5O12 on the Performance and Function of the LiNi0.5Mn1.5O4 Li4Ti5O12 Full Batteryâ€"An in-operando Neutron Powder Diffraction Study. Frontiers in Energy Research, 2018, 6, .	1.2	12
470	Introducing 4 <i>>s</i> p a€"2 <i>p</i> Orbital Hybridization to Stabilize Spinel Oxide Cathodes for Lithiumâ€ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	12
471	Electrochemical Hydrogen Storage in Single-Walled Carbon Nanotube Paper. Journal of Nanoscience and Nanotechnology, 2006, 6, 713-718.	0.9	11
472	Dehydrogenation/rehydrogenation mechanism in aluminum destabilized lithium borohydride. Journal of Materials Research, 2009, 24, 2720-2727.	1.2	11
473	Stress evolution and lattice distortion induced by thickness variation and lattice misfit in La0.67Sr0.33MnO3â [°] ¹Î [°] films. Solid State Communications, 2010, 150, 66-69.	0.9	11
474	Comparison of hydrogen storage properties of Mg–Ni from different preparation methods. Materials Chemistry and Physics, 2011, 127, 405-408.	2.0	11
475	Preparation, microstructure and electrochemical performance of nanoparticles LiMn2O3.9Br0.1. Materials Letters, 2011, 65, 3486-3488.	1.3	11
476	Molecular-Scale Functionality on Graphene To Unlock the Energy Capabilities of Metal Hydrides for High-Capacity Lithium-Ion Batteries. ACS Nano, 2018, 12, 8177-8186.	7.3	11
477	Protonic acid catalysis to generate fast electronic transport channels in O-functionalized carbon textile with enhanced energy storage capability. Nano Energy, 2021, 80, 105572.	8.2	11
478	A Robust Coinâ€Cell Design for In Situ Synchrotronâ€based Xâ€Ray Powder Diffraction Analysis of Battery Materials. Batteries and Supercaps, 2021, 4, 380-384.	2.4	11
479	Preparation and performance comparison of LiMn2O3.95Br0.05 and LiMn2O3.95Br0.05/SiO2 cathode materials for lithium-ion battery. Journal of Solid State Electrochemistry, 2011, 15, 725-730.	1.2	10
480	Synthesis and hydrogen release properties of alkyl-substituted amine-boranes. Journal of Materials Chemistry A, 2014, 2, 10682-10687.	5.2	10
481	Ultrafast Li-ion migration in eggshell-inspired 2D@2D dual porous construction towards high rate energy storage. Carbon, 2020, 170, 66-74.	5.4	10
482	Effect of Annealing on Electrochemical Performance of Anodized TiO ₂ Nanotubes for Lithium Ion Batteries. Advanced Science Letters, 2011, 4, 469-473.	0.2	10
483	Crystal structure and spectroscopic study on photochromism of 1,3-diphenyl-4-(4 â \in 2-fluoro)benzal-5-pyrazolone N(4)-phenyl semicarba-zone. Journal of Molecular Structure, 2005, 752, 124-129.	1.8	9
484	Synthesis and Electrochemical Properties of Molybdenum Disulfide/Carbon Microsphere Composite. Journal of Electronic Materials, 2017, 46, 1079-1087.	1.0	9
485	A Facile Fabrication of Fe ₃ O ₄ /Graphene Nanosheets for Lithium-Ion Battery. Science of Advanced Materials, 2014, 6, 283-289.	0.1	9
486	Cathode materials for high-performance potassium-ion batteries. Cell Reports Physical Science, 2021, 2, 100657.	2.8	9

#	Article	IF	Citations
487	Characterization of Nanoparticles of LiMn ₂ O ₄ Synthesized by a One-Step Intermediate-Temperature Solid-State Reaction. Journal of Nanoscience and Nanotechnology, 2004, 4, 162-166.	0.9	8
488	Enhanced Electrochemical Performance of MoS ₂ for Lithium Ion Batteries by Simple Chemical Lithiation. Journal of the Chinese Chemical Society, 2012, 59, 1196-1200.	0.8	8
489	Mass production of Li ₄ Ti ₅ O ₁₂ with a conductive network via in situ spray pyrolysis as a long cycle life, high rate anode material for lithium ion batteries. RSC Advances, 2014, 4, 38568-38574.	1.7	8
490	Synthesis and electrochemical properties of VO $\!\!\!/\!\!\!/ C$ nanofiber composite for lithium ion battery application. Materials Letters, 2014, 117, 134-137.	1.3	8
491	Effect of Sn substitution for Co on microstructure and electrochemical performance of AB5 type La0.7Mg0.3Al0.3Mn0.4Co0.5–xSnxNi3.8 (x=0–0.5) alloys. Transactions of Nonferrous Metals Society of China, 2015, 25, 520-526.	1.7	8
492	Graphene aerogel supported crystalline ZnO@amorphous Zn ₂ GeO ₄ core–shell hierarchical structure for lithium storage. RSC Advances, 2017, 7, 17769-17772.	1.7	8
493	Surfaceâ€Electron Coupling for Efficient Hydrogen Evolution. Angewandte Chemie, 2019, 131, 17873-17881.	1.6	8
494	Highâ€Performance K–CO ₂ Batteries Based on Metalâ€Free Carbon Electrocatalysts. Angewandte Chemie, 2020, 132, 3498-3502.	1.6	8
495	Interfacial Engineering Regulates Deposition Kinetics of Zinc Metal Anodes. ACS Applied Energy Materials, 2021, 4, 11743-11751.	2.5	8
496	Hydrogen Storage Properties of Mg-BCC Composite. International Journal of Green Energy, 2009, 6, 607-615.	2.1	7
497	Tin Oxide Thin Film with Threeâ€Dimensional Ordered Reticular Morphology as a Lithium Ion Battery Anode. ChemPhysChem, 2009, 10, 3101-3104.	1.0	7
498	Electrochemical properties of Fe ₂ O ₃ thin film fabricated by electrostatic spray deposition for lithium-ion batteries. Physica Scripta, 2010, T139, 014066.	1.2	7
499	Synthesis and modification of non-stoichiometric spinel (Li1.02Mn1.90Y0.02O4â^'yF0.08) for lithium-ion batteries. Materials Chemistry and Physics, 2010, 119, 82-85.	2.0	7
500	Multiferroic double-perovskite Bi2FeMnO6 hollow particles. Current Applied Physics, 2011, 11, S236-S239.	1.1	7
501	Preparation and electrochemical performance of LiFePO4 \hat{a} 'x F x /C nanorods by room-temperature solid-state reaction and microwave heating. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	7
502	Preparation and electrochemical properties of LiFePO4/C nanoparticles using different organic carbon sources. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	7
503	Heterocarbides Reinforced Electrochemical Energy Storage. Small, 2019, 15, 1903652.	5.2	7
504	Intrinsically Optimizing Charge Transfer via Tuning Charge/Discharge Mode for Lithium–Oxygen Batteries. Small, 2019, 15, 1900154.	5.2	7

#	Article	IF	CITATIONS
505	Fatigueâ€Resistant Interfacial Layer for Safe Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 25712-25717.	1.6	7
506	Lead-coated glass fibre mesh grids for lead–acid batteries. Journal of Applied Electrochemistry, 2003, 33, 1057-1061.	1.5	6
507	Electrochemical and in situ synchrotron X-ray diffraction studies of Li[Li0.3Cr0.1Mn0.6]O2 cathode materials. Solid State Ionics, 2004, 167, 183-189.	1.3	6
508	Preparation and characterization of Ag/C nanocables-modified nanosized C-LiFePO4. Journal of Nanoparticle Research, 2011, 13, 4815-4820.	0.8	6
509	GO@Se@Ni Cathode Materials for Lithium-Selenium Battery. Journal of the Electrochemical Society, 2019, 166, A5259-A5264.	1.3	6
510	Postâ€lithium battery materials and technology. EcoMat, 2020, 2, e12048.	6.8	6
511	Nanocrystalline $<$ I $>$ α $<$ /I $>$ -Ni(OH) $<$ SUB $>$ 2 $<$ /SUB $>$ Prepared by Ultrasonic Precipitation. Journal of Nanoscience and Nanotechnology, 2002, 2, 45-46.	0.9	5
512	Lithium-ion Batteries: 3D Hierarchical Porous \hat{l}_{\pm} -Fe2O3Nanosheets for High-Performance Lithium-lon Batteries (Adv. Energy Mater. 4/2015). Advanced Energy Materials, 2015, 5, .	10.2	5
513	Liâ€lon Cells: Surface Engineering Strategies of Layered LiCoO ₂ Cathode Material to Realize Highâ€Energy and Highâ€Voltage Liâ€lon Cells (Adv. Energy Mater. 1/2017). Advanced Energy Materials, 2017, 7,	.10.2	5
514	Thermal stability and hydrogen storage property of Mg1.9Cu0.1Nix (x=1.8, 1.9, 2.0 and 2.1) alloys. Journal of Alloys and Compounds, 2006, 426, 335-340.	2.8	4
515	Preparation of tin nanocomposite as anode material by molten salts method and its application in lithium ion batteries. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2546-2550.	0.8	4
516	Synthesis and Electrochemical Properties of Nano WO3/C Composite for Lithium-Ion Batteries. ECS Transactions, 2014, 62, 9-18.	0.3	4
517	In Situ Neutron Powder Diffraction Using Custom-made Lithium-ion Batteries. Journal of Visualized Experiments, 2014, , e52284.	0.2	4
518	Effects of Cu Substitution for Sn on the Electrochemical Performance of La0.7Mg0.3Al0.3Mn0.4Sn0.5â^'xCuxNi3.8 (x = 0â€"0.5) Alloys for Ni-MH Batteries. Batteries, 2015, 1, 3-10.	2.1	4
519	Learning from biology: biomimetic carbon cells promote high-power potassium ion batteries. National Science Review, 2021, 8, nwab043.	4.6	4
520	Best Practices for Reporting on Energy Storage. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16131-16132.	4.0	3
521	Synthesis of ZnMoO4 with different polymorphas anode materials for lithium–ion batteries application. Journal of Materials Science: Materials in Electronics, 2019, 30, 20213-20220.	1,1	3
522	Enhanced electrochemical properties of nonstoichiometric amorphous Mg2Ni1.3 electrodes. Journal of Applied Electrochemistry, 2006, 36, 11-16.	1.5	2

#	Article	IF	CITATIONS
523	Real-time measurement of desorption temperature and kinetics of magnesium hydride powder sample based on optical reflection. International Journal of Hydrogen Energy, 2009, 34, 9168-9172.	3.8	2
524	Hydrothermal Synthesis of Mn x Co y Nilâ^'xâ^'y (OH)2 as a Novel Anode Material for the Lithium-Ion Battery. Journal of Electronic Materials, 2015, 44, 2877-2882.	1.0	2
525	Future Energy Technology: Enabling New Science for a Sustainable Future. ChemPlusChem, 2018, 83, 890-892.	1.3	2
526	Natural Soft/Rigid Superlattices as Anodes for Highâ€Performance Lithiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 17647-17651.	1.6	2
527	Effect of Magnesium Bromide on the Electrical and Electrochemical Properties of PVA and Tetraethylene Glycol Dimethyl Ether Polymer Electrolyte for Solid State Magnesium Batteries. Energy and Environment Focus, 2016, 5, 125-130.	0.3	2
528	Building a House for Stabilizing Lithiumâ€Metal Anodes. Batteries and Supercaps, 0, , .	2.4	2
529	Manganese-Ion Doped Layered Nanocrystalline Li-Co-Mn-O Powders Prepared from Sol-Gel Processing. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 727-732.	0.1	1
530	Synthesis and Electrochemical Properties of Sn–SnO2/C Nanocomposite. Journal of Nanoscience and Nanotechnology, 2012, 12, 7747-7751.	0.9	1
531	Spinel Oxide Cathode Material for High Power Lithium Ion Batteries for Electrical Vehicles. Energy Procedia, 2016, 88, 689-692.	1.8	1
532	Diffusion and Kinetics of Solvent-Free Reaction between Molecular Crystals by Time-Resolved Powder UVâ^'Vis Reflection Spectrum. Journal of Physical Chemistry A, 2008, 112, 5390-5394.	1.1	0
533	Characterization of Pd Nano-Thin Films for High-Speed Switchable Mirrors. Materials Science Forum, 0, 700, 166-169.	0.3	0
534	Frontispiz: Surfaceâ€Electron Coupling for Efficient Hydrogen Evolution. Angewandte Chemie, 2019, 131,	1.6	0
535	Frontispiece: Surfaceâ€Electron Coupling for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
536	Submicron-Sized Clusters of LiFePO4-C Nanoparticles for Lithium-lon Battery Cathodes. Advanced Science Letters, 2011, 4, 3523-3527.	0.2	0
537	ZnSn(OH)6 nanocubes as a high-performance anode for lithium-ion batteries. Advanced Materials Letters, 2018, 9, 880-884.	0.3	0
538	In situ growth of NiS2 nanosheet array on Ni foil as cathode to improve the performance of lithium/sodium-sulfur batteries. Science China Technological Sciences, 0, , 1.	2.0	0