Gail V W Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8839128/publications.pdf

Version: 2024-02-01

222 papers 25,352 citations

75 h-index 153 g-index

227 all docs

227 docs citations

times ranked

227

36904 citing authors

#	Article	IF	CITATIONS
1	Commentary: BAG3 as a Mediator of Endosome Function and Tau Clearance. Neuroscience, 2023, 518, 4-9.	1.1	4
2	The role of BAG3 in health and disease: A "Magic BAG of Tricks― Journal of Cellular Biochemistry, 2022, 123, 4-21.	1.2	18
3	BAG3 Regulation of RAB35 Mediates the Endosomal Sorting Complexes Required for Transport/Endolysosome Pathway and Tau Clearance. Biological Psychiatry, 2022, 92, 10-24.	0.7	10
4	Tau Post-Translational Modifications: Potentiators of Selective Vulnerability in Sporadic Alzheimer's Disease. Biology, 2021, 10, 1047.	1.3	14
5	Transglutaminase 2 as a therapeutic target for neurological conditions. Expert Opinion on Therapeutic Targets, 2021, 25, 721-731.	1.5	10
6	Deletion or Inhibition of Astrocytic Transglutaminase 2 Promotes Functional Recovery after Spinal Cord Injury. Cells, 2021, 10, 2942.	1.8	7
7	The role of transglutaminase 2 in mediating glial cell function and pathophysiology in the central nervous system. Analytical Biochemistry, 2020, 591, 113556.	1.1	12
8	Presenilin 1 Regulates Membrane Homeostatic Pathways that are Dysregulated in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 77, 961-977.	1.2	15
9	The Crosstalk Between Pathological Tau Phosphorylation and Mitochondrial Dysfunction as a Key to Understanding and Treating Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 5103-5120.	1.9	26
10	Tauopathy-associated tau modifications selectively impact neurodegeneration and mitophagy in a novel C. elegans single-copy transgenic model. Molecular Neurodegeneration, 2020, 15, 65.	4.4	35
11	A T231E Mutant that Mimics Pathologic Phosphorylation of Tau in Alzheimer's disease Causes Activation of the Mitochondrial Unfolded Protein Response in touch neurons. MicroPublication Biology, 2020, 2020, .	0.1	1
12	Tissue Transglutaminase-Mediated AT1 Receptor Sensitization Underlies Pro-inflammatory Cytokine LIGHT-Induced Hypertension. American Journal of Hypertension, 2019, 32, 476-485.	1.0	14
13	BAG3 and SYNPO (synaptopodin) facilitate phospho-MAPT/Tau degradation via autophagy in neuronal processes. Autophagy, 2019, 15, 1199-1213.	4.3	67
14	A tau homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons to tau pathology. Nature Neuroscience, 2019, 22, 47-56.	7.1	154
15	lt's all about tau. Progress in Neurobiology, 2019, 175, 54-76.	2.8	134
16	Tau Clearance Mechanisms. Advances in Experimental Medicine and Biology, 2019, 1184, 57-68.	0.8	17
17	Transglutaminase 2: Friend or foe? The discordant role in neurons and astrocytes. Journal of Neuroscience Research, 2018, 96, 1150-1158.	1.3	22
18	Depletion of transglutaminase 2 in neurons alters expression of extracellular matrix and signal transduction genes and compromises cell viability. Molecular and Cellular Neurosciences, 2018, 86, 72-80.	1.0	13

#	Article	IF	CITATIONS
19	Nrf2 mediates the expression of BAG3 and autophagy cargo adaptor proteins and tau clearance in an age-dependent manner. Neurobiology of Aging, 2018, 63, 128-139.	1.5	49
20	Nuclear transglutaminase 2 directly regulates expression of cathepsin S in rat cortical neurons. European Journal of Neuroscience, 2018, 48, 3043-3051.	1.2	7
21	Depletion of astrocytic transglutaminase 2 improves injury outcomes. Molecular and Cellular Neurosciences, 2018, 92, 128-136.	1.0	13
22	Inhibition or ablation of transglutaminase 2 impairs astrocyte migration. Biochemical and Biophysical Research Communications, 2017, 482, 942-947.	1.0	12
23	Transglutaminase 2 modulation of NF-κB signaling in astrocytes is independent of its ability to mediate astrocytic viability in ischemic injury. Brain Research, 2017, 1668, 1-11.	1.1	20
24	Subcellular localization patterns of transglutaminase 2 in astrocytes and neurons are differentially altered by hypoxia. NeuroReport, 2017, 28, 1208-1214.	0.6	11
25	Assessing the degradation of tau in primary neurons: The role of autophagy. Methods in Cell Biology, 2017, 141, 229-244.	0.5	17
26	Endostatin and transglutaminase 2 are involved inÂfibrosis of the aging kidney. Kidney International, 2016, 89, 1281-1292.	2.6	46
27	The complex role of transglutaminase 2 in glioblastoma proliferation. Neuro-Oncology, 2016, 19, now157.	0.6	13
28	Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Scientific Reports, 2016, 6, 24933.	1.6	86
29	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
30	Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutritional Neuroscience, 2016, 19, 21-31.	1.5	65
31	Mechanisms of tau and A \hat{l}^2 -induced excitotoxicity. Brain Research, 2016, 1634, 119-131.	1.1	40
32	Transglutaminases and Neurological Diseases. , 2015, , 283-314.		0
33	Autophagy in Alzheimer's disease. Reviews in the Neurosciences, 2015, 26, 385-95.	1.4	167
34	Tau facilitates $\hat{A^2}$ -induced loss of mitochondrial membrane potential independent of cytosolic calcium fluxes in mouse cortical neurons. Neuroscience Letters, 2015, 597, 32-37.	1.0	23
35	BAG3 facilitates the clearance of endogenous tau in primary neurons. Neurobiology of Aging, 2015, 36, 241-248.	1.5	79
36	Transglutaminase Regulation of Cell Function. Physiological Reviews, 2014, 94, 383-417.	13.1	353

#	Article	IF	Citations
37	NDP52 associates with phosphorylated tau in brains of an Alzheimer disease mouse model. Biochemical and Biophysical Research Communications, 2014, 454, 196-201.	1.0	34
38	Phosphorylated tau potentiates $\hat{A^2}$ -induced mitochondrial damage in mature neurons. Neurobiology of Disease, 2014, 71, 260-269.	2.1	55
39	Sulforaphane induces autophagy through ERK activation in neuronal cells. FEBS Letters, 2014, 588, 3081-3088.	1.3	55
40	Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nature Communications, 2014, 5, 3496.	5.8	265
41	P1-005: SELECTIVELY ENHANCING PATHOLOGICAL FORMS OF TAU VIA THE AUTOPHAGY PATHWAY. , 2014, 10, P306-P306.		O
42	Transglutaminase and Polyamination of Tubulin: Posttranslational Modification for Stabilizing Axonal Microtubules. Neuron, 2013, 78, 109-123.	3.8	167
43	Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease. Molecular Neurodegeneration, 2013, 8, 45.	4.4	88
44	Transglutaminase 2 facilitates or ameliorates HIF signaling and ischemic cell death depending on its conformation and localization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1-10.	1.9	35
45	Tau Clearance Mechanisms and Their Possible Role in the Pathogenesis of Alzheimer Disease. Frontiers in Neurology, 2013, 4, 122.	1.1	174
46	Impaired Mitochondrial Dynamics and Nrf2 Signaling Contribute to Compromised Responses to Oxidative Stress in Striatal Cells Expressing Full-Length Mutant Huntingtin. PLoS ONE, 2013, 8, e57932.	1.1	80
47	Vena cava and aortic smooth muscle cells express transglutaminases 1 and 4 in addition to transglutaminase 2. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1355-H1366.	1.5	26
48	Truncated tau and ${\rm A}\hat{\rm I}^2$ cooperatively impair mitochondria in primary neurons. Neurobiology of Aging, 2012, 33, 619.e25-619.e35.	1.5	103
49	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
50	Metabolic State Determines Sensitivity to Cellular Stress in Huntington Disease: Normalization by Activation of PPAR $\hat{1}^3$. PLoS ONE, 2012, 7, e30406.	1.1	34
51	Transglutaminase 2: A molecular Swiss army knife. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 406-419.	1.9	202
52	Complete transglutaminase 2 ablation results in reduced stroke volumes and astrocytes that exhibit increased survival in response to ischemia. Neurobiology of Disease, 2012, 45, 1042-1050.	2.1	40
53	Decreases in valosin-containing protein result in increased levels of tau phosphorylated at Ser262/356. FEBS Letters, 2011, 585, 3424-3429.	1.3	8
54	Cytosolic Guanine Nucledotide Binding Deficient Form of Transglutaminase 2 (R580a) Potentiates Cell Death in Oxygen Glucose Deprivation. PLoS ONE, 2011, 6, e16665.	1,1	36

#	Article	IF	Citations
55	The toxicity of tau in Alzheimer disease: turnover, targets and potential therapeutics. Journal of Cellular and Molecular Medicine, 2011, 15, 1621-1635.	1.6	65
56	The Application Of Permanent Middle Cerebral Artery Ligation in the Mouse. Journal of Visualized Experiments, $2011, \ldots$	0.2	17
57	Transglutaminase 2 and Its Role in Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 699-707.	2.5	151
58	The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease. Journal of Bioenergetics and Biomembranes, 2010, 42, 199-205.	1.0	62
59	Transglutaminase 2 protects against ischemic stroke. Neurobiology of Disease, 2010, 39, 334-343.	2.1	42
60	AES/GRG5: More than just a dominantâ€negative TLE/GRG family member. Developmental Dynamics, 2010, 239, 2795-2805.	0.8	33
61	A Caspase Cleaved Form of Tau Is Preferentially Degraded through the Autophagy Pathway. Journal of Biological Chemistry, 2010, 285, 21978-21987.	1.6	126
62	Split GFP Complementation Assay for Quantitative Measurement of Tau Aggregation In Situ. Methods in Molecular Biology, 2010, 670, 109-123.	0.4	22
63	Differential Modulation of TCF/LEF-1 Activity by the Soluble LRP6-ICD. PLoS ONE, 2010, 5, e11821.	1.1	15
64	The role of tau kinases in Alzheimer's disease. Current Opinion in Drug Discovery & Development, 2010, 13, 595-603.	1.9	89
65	Increased expression of Bim contributes to the potentiation of serum deprivation-induced apoptotic cell death in Huntington's disease knock-in striatal cell line. Neurological Research, 2009, 31, 77-83.	0.6	20
66	Phosphorylation of PPP(S/T)P motif of the free LRP6 intracellular domain is not required to activate the Wnt/l²â€catenin pathway and attenuate GSK3β activity. Journal of Cellular Biochemistry, 2009, 108, 886-895.	1.2	10
67	Role of mitochondrial dysfunction in the pathogenesis of Huntington's disease. Brain Research Bulletin, 2009, 80, 242-247.	1.4	135
68	Caspase-cleaved Tau Expression Induces Mitochondrial Dysfunction in Immortalized Cortical Neurons. Journal of Biological Chemistry, 2009, 284, 18754-18766.	1.6	146
69	Intracellular Localization and Conformational State of Transglutaminase 2: Implications for Cell Death. PLoS ONE, 2009, 4, e6123.	1.1	66
70	Tau Protein Is Hyperphosphorylated in a Site-Specific Manner in Apoptotic Neuronal PC12 Cells. Journal of Neurochemistry, 2008, 75, 2346-2357.	2.1	43
71	p38 Kinase Is Activated in the Alzheimer's Disease Brain. Journal of Neurochemistry, 2008, 72, 2053-2058.	2.1	341
72	New application of βâ€galactosidase complementation to monitor tau selfâ€association. Journal of Neurochemistry, 2008, 106, 1545-1551.	2.1	7

#	Article	IF	Citations
73	Histone deacetylase 6 interacts with the microtubuleâ€associated protein tau. Journal of Neurochemistry, 2008, 106, 2119-2130.	2.1	312
74	Immortalized cortical neurons expressing caspase-cleaved tau are sensitized to endoplasmic reticulum stress induced cell death. Brain Research, 2008, 1234, 206-212.	1.1	36
75	Transglutaminase 2 protects against ischemic insult, interacts with HIF1 \hat{I}^2 , and attenuates HIF1 signaling. FASEB Journal, 2008, 22, 2662-2675.	0.2	71
76	Rosiglitazone Treatment Prevents Mitochondrial Dysfunction in Mutant Huntingtin-expressing Cells. Journal of Biological Chemistry, 2008, 283, 25628-25637.	1.6	117
77	The Last Tangle of Tau. Journal of Alzheimer's Disease, 2008, 14, 441-447.	1.2	25
78	Activation of Glycogen Synthase Kinase $3\hat{l}^2$ Promotes the Intermolecular Association of Tau. Journal of Biological Chemistry, 2007, 282, 23410-23417.	1.6	39
79	Mitochondrial-targeted active Akt protects SH-SY5Y neuroblastoma cells from staurosporine-induced apoptotic cell death. Journal of Cellular Biochemistry, 2007, 102, 196-210.	1.2	38
80	Ubiquitin-proteasome system alterations in a striatal cell model of huntington's disease. Journal of Neuroscience Research, 2007, 85, 1774-1788.	1.3	43
81	Regulated proteolytic processing of LRP6 results in release of its intracellular domain. Journal of Neurochemistry, 2007, 101, 517-529.	2.1	37
82	Type 2 transglutaminase differentially modulates striatal cell death in the presence of wild type or mutant huntingtin. Journal of Neurochemistry, 2007, 102, 25-36.	2.1	22
83	Split GFP complementation assay: a novel approach to quantitatively measure aggregation of tau <i>in situ</i> : effects of GSK3β activation and caspase 3 cleavage. Journal of Neurochemistry, 2007, 103, 2529-2539.	2.1	69
84	The role of tau phosphorylation and cleavage in neuronal cell death. Frontiers in Bioscience - Landmark, 2007, 12, 733.	3.0	113
85	Transglutaminase 2 in neurodegenerative disorders. Frontiers in Bioscience - Landmark, 2007, 12, 891.	3.0	63
86	Tau Is Hyperphosphorylated at Multiple Sites in Mouse Brain In Vivo After Streptozotocin-Induced Insulin Deficiency. Diabetes, 2006, 55, 3320-3325.	0.3	169
87	The protective effects of cystamine in the R6/2 Huntington's disease mouse involve mechanisms other than the inhibition of tissue transglutaminase. Neurobiology of Aging, 2006, 27, 871-879.	1.5	70
88	Tau phosphorylation and proteolysis: Insights and perspectives. Journal of Alzheimer's Disease, 2006, 9, 243-250.	1.2	61
89	Tissue transglutaminase overexpression in the brain potentiates calcium-induced hippocampal damage. Journal of Neurochemistry, 2006, 97, 582-594.	2.1	45
90	The Role of Tau Phosphorylation in the Pathogenesis of Alzheimers Disease. Current Alzheimer Research, 2006, 3, 449-463.	0.7	124

#	Article	IF	Citations
91	Mutant Huntingtin Expression Induces Mitochondrial Calcium Handling Defects in Clonal Striatal Cells. Journal of Biological Chemistry, 2006, 281, 34785-34795.	1.6	116
92	The Low Density Lipoprotein Receptor-related Protein 6 Interacts with Glycogen Synthase Kinase 3 and Attenuates Activity. Journal of Biological Chemistry, 2006, 281, 4787-4794.	1.6	80
93	Site-specific Phosphorylation and Caspase Cleavage Differentially Impact Tau-Microtubule Interactions and Tau Aggregation. Journal of Biological Chemistry, 2006, 281, 19107-19114.	1.6	100
94	Verification of somatic CAG repeat expansion by pre-PCR fractionation. Journal of Neuroscience Methods, 2005, 144, 11-17.	1.3	11
95	Transglutaminases in Neurodegenerative Disorders. , 2005, 38, 139-157.		18
96	Tissue transglutaminase contributes to disease progression in the R6/2 Huntington's disease mouse model via aggregate-independent mechanisms. Journal of Neurochemistry, 2005, 92, 83-92.	2.1	79
97	Cystamine treatment is neuroprotective in the YAC128 mouse model of Huntington disease. Journal of Neurochemistry, 2005, 95, 210-220.	2.1	96
98	Role of the intracellular domains of LRP5 and LRP6 in activating the Wnt canonical pathway. Journal of Cellular Biochemistry, 2005, 95, 328-338.	1.2	57
99	FRAT-2 Preferentially Increases Glycogen Synthase Kinase 3β-mediated Phosphorylation of Primed Sites, Which Results in Enhanced Tau Phosphorylation. Journal of Biological Chemistry, 2005, 280, 270-276.	1.6	18
100	Mitochondrial Respiration and ATP Production Are Significantly Impaired in Striatal Cells Expressing Mutant Huntingtin. Journal of Biological Chemistry, 2005, 280, 30773-30782.	1.6	221
101	14-3-3ζ does not increase GSK3β-mediated tau phosphorylation in cell culture models. Neuroscience Letters, 2005, 384, 211-216.	1.0	14
102	Increased glutathione levels in cortical and striatal mitochondria of the R6/2 Huntington's disease mouse model. Neuroscience Letters, 2005, 386, 63-68.	1.0	37
103	Tau phosphorylation: physiological and pathological consequences. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 280-297.	1.8	379
104	Primed phosphorylation of tau at Thr231 by glycogen synthase kinase $3\hat{l}^2$ (GSK3 \hat{l}^2) plays a critical role in regulating tau's ability to bind and stabilize microtubules. Journal of Neurochemistry, 2004, 88, 349-358.	2.1	215
105	Glycogen Synthase Kinase 3β Induces Caspase-cleaved Tau Aggregation in Situ. Journal of Biological Chemistry, 2004, 279, 54716-54723.	1.6	104
106	Striatal cells from mutant huntingtin knock-in mice are selectively vulnerable to mitochondrial complex II inhibitor-induced cell death through a non-apoptotic pathway. Human Molecular Genetics, 2004, 13, 669-681.	1.4	78
107	Intracellular Localization and Activity State of Tissue Transglutaminase Differentially Impacts Cell Death. Journal of Biological Chemistry, 2004, 279, 8715-8722.	1.6	103
108	Mutant (R406W) Human Tau Is Hyperphosphorylated and Does Not Efficiently Bind Microtubules in a Neuronal Cortical Cell Model. Journal of Biological Chemistry, 2004, 279, 7893-7900.	1.6	45

#	Article	IF	CITATIONS
109	Cyclinâ€dependent kinaseâ€5 in neurodegeneration. Journal of Neurochemistry, 2004, 88, 1313-1326.	2.1	132
110	Cyclin-dependent kinase-5 in neurodegeneration. Journal of Neurochemistry, 2004, 89, 528-528.	2.1	1
111	Developmental regulation of tissue transglutaminase in the mouse forebrain. Journal of Neurochemistry, 2004, 91, 1369-1379.	2.1	36
112	Tissue transglutaminase triggers oligomerization and activation of dual leucine zipper-bearing kinase in calphostin C-treated cells to facilitate apoptosis. Cell Death and Differentiation, 2004, 11, 542-549.	5.0	34
113	The glamour and gloom of glycogen synthase kinase-3. Trends in Biochemical Sciences, 2004, 29, 95-102.	3.7	1,400
114	Tissue transglutaminase is not involved in the aggregate formation of stably expressed î±-synuclein in sh-sy5y human neuroblastoma cells. Archives of Pharmacal Research, 2004, 27, 850-856.	2.7	5
115	Immunoblot analysis reveals that isopeptide antibodies do not specifically recognize the $\hat{\mu}$ -(\hat{l}^3 -glutamyl)lysine bonds formed by transglutaminase activity. Journal of Neuroscience Methods, 2004, 134, 151-158.	1.3	26
116	Effects of cyclin-dependent kinase-5 activity on apoptosis and tau phosphorylation in immortalized mouse brain cortical cells. Journal of Neuroscience Research, 2004, 76, 110-120.	1.3	27
117	Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Human Molecular Genetics, 2004, 13, 1407-1420.	1.4	438
118	Validity of mouse models for the study of tissue transglutaminase in neurodegenerative diseases. Molecular and Cellular Neurosciences, 2004, 25, 493-503.	1.0	28
119	Tau phosphorylation in neuronal cell function and dysfunction. Journal of Cell Science, 2004, 117, 5721-5729.	1.2	506
120	Cystamine Inhibits Caspase Activity. Journal of Biological Chemistry, 2003, 278, 3825-3830.	1.6	155
121	The p38 MAP kinase signaling pathway in Alzheimer's disease. Experimental Neurology, 2003, 183, 263-268.	2.0	88
122	Glycogen Synthase Kinase $3\hat{l}^2$ Phosphorylates Tau at Both Primed and Unprimed Sites. Journal of Biological Chemistry, 2003, 278, 187-193.	1.6	220
123	Tissue Transglutaminase Directly Regulates Adenylyl Cyclase Resulting in Enhanced cAMP-response Element-binding Protein (CREB) Activation. Journal of Biological Chemistry, 2003, 278, 26838-26843.	1.6	38
124	Direct, activating interaction between glycogen synthase kinase-3Â and p53 after DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7951-7955.	3.3	247
125	Transient osmotic stress facilitates mutant huntingtin aggregation. NeuroReport, 2002, 13, 2543-2546.	0.6	7
126	Mutant huntingtin aggregates do not sensitize cells to apoptotic stressors. FEBS Letters, 2002, 515, 61-65.	1.3	8

#	Article	IF	Citations
127	Does tissue transglutaminase play a role in Huntington's disease?. Neurochemistry International, 2002, 40, 37-52.	1.9	32
128	Tau, where are we now?. Journal of Alzheimer's Disease, 2002, 4, 375-398.	1.2	83
129	Microtubule/MAP-Affinity Regulating Kinase (MARK) Is Activated by Phenylarsine Oxide In Situ and Phosphorylates Tau Within Its Microtubule-Binding Domain. Journal of Neurochemistry, 2002, 74, 1463-1468.	2.1	23
130	Impaired Mitochondrial Function Results in Increased Tissue Transglutaminase Activity In Situ. Journal of Neurochemistry, 2002, 75, 1951-1961.	2.1	39
131	Cdk5 phosphorylates p53 and regulates its activity. Journal of Neurochemistry, 2002, 81, 307-313.	2.1	92
132	Tissue transglutaminase differentially modulates apoptosis in a stimuli-dependent manner. Journal of Neurochemistry, 2002, 81, 780-791.	2.1	74
133	Axin negatively affects tau phosphorylation by glycogen synthase kinase 3β. Journal of Neurochemistry, 2002, 83, 904-913.	2.1	22
134	Select Alterations in Protein Kinases and Phosphatases During Apoptosis of Differentiated PC12 Cells. Journal of Neurochemistry, 2002, 68, 2338-2347.	2.1	35
135	Identification of the N-terminal functional domains of Cdk5 by molecular truncation and computer modeling. Proteins: Structure, Function and Bioinformatics, 2002, 48, 447-453.	1.5	66
136	Glycogen Synthase Kinase $3\hat{l}^2$ Is Tyrosine Phosphorylated by PYK2. Biochemical and Biophysical Research Communications, 2001, 284, 485-489.	1.0	106
137	Tissue Transglutaminase Selectively Modifies Proteins Associated with Truncated Mutant Huntingtin in Intact Cells. Neurobiology of Disease, 2001, 8, 391-404.	2.1	31
138	Tissue transglutaminase is essential for neurite outgrowth in human neuroblastoma SH-SY5Y cells. Neuroscience, 2001, 102, 481-491.	1.1	112
139	Three different human tau isoforms and rat neurofilament light, middle and heavy chain proteins are cellular substrates for transglutaminase. Neuroscience Letters, 2001, 298, 9-12.	1.0	37
140	Complement activation by neurofibrillary tangles in Alzheimer's disease. Neuroscience Letters, 2001, 305, 165-168.	1.0	153
141	Hyperosmotic stress-induced apoptosis and tau phosphorylation in human neuroblastoma cells. Journal of Neuroscience Research, 2001, 65, 573-582.	1.3	39
142	Tau and HMW tau phosphorylation and compartmentalization in apoptotic neuronal PC12 cells. Journal of Neuroscience Research, 2001, 66, 203-213.	1.3	28
143	Cholinergic- and stress-induced signaling activities in cells overexpressing wild-type and mutant presenilin-1. Brain Research, 2001, 903, 226-230.	1.1	11
144	Tau phosphorylation during apoptosis of human SH-SY5Y neuroblastoma cells. Brain Research, 2001, 921, 31-43.	1.1	34

#	Article	IF	CITATIONS
145	Tissue Transglutaminase Does Not Contribute to the Formation of Mutant Huntingtin Aggregates. Journal of Cell Biology, 2001, 153, 25-34.	2.3	128
146	Modulation of tau phosphorylation and intracellular localization by cellular stress. Biochemical Journal, 2000, 345, 263.	1.7	16
147	Modulation of tau phosphorylation and intracellular localization by cellular stress. Biochemical Journal, 2000, 345, 263-270.	1.7	51
148	Transient oxidative stress in SH-SY5Y human neuroblastoma cells results in caspase dependent and independent cell death and tau proteolysis. Journal of Neuroscience Research, 2000, 61, 515-523.	1.3	34
149	Insulin-like growth factor-1 and insulin mediate transient site-selective increases in tau phosphorylation in primary cortical neurons. Neuroscience, 2000, 99, 305-316.	1.1	119
150	Tissue transglutaminase: a possible role in neurodegenerative diseases. Progress in Neurobiology, 2000, 61, 439-463.	2.8	159
151	Measurement of Calpain Activity In Vitro and In Situ Using a Fluorescent Compound and Tau as Substrates. , 2000, 144, 143-150.		9
152	Tau Protein in Normal and Alzheimer's Disease Brain*. Journal of Alzheimer's Disease, 1999, 1, 307-328.	1.2	50
153	Transient Increases in Intracellular Calcium Result in Prolonged Site-selective Increases in Tau Phosphorylation through a Glycogen Synthase Kinase 3β-dependent Pathway. Journal of Biological Chemistry, 1999, 274, 21395-21401.	1.6	124
154	The Microtubule Binding of Tau and High Molecular Weight Tau in Apoptotic PC12 Cells Is Impaired because of Altered Phosphorylation. Journal of Biological Chemistry, 1999, 274, 35686-35692.	1.6	39
155	Rapid, single-step procedure for the identification of transglutaminase-mediated isopeptide crosslinks in amino acid digests. Biomedical Applications, 1999, 732, 65-72.	1.7	14
156	Insulin Transiently Increases Tau Phosphorylation. Journal of Neurochemistry, 1999, 72, 576-584.	2.1	222
157	Glycogen synthase kinase- $3\hat{l}^2$, \hat{l}^2 -catenin, and tau in postmortem bipolar brain. Journal of Neural Transmission, 1999, 106, 1217-1222.	1.4	62
158	Hippocampal microtubule-associated protein-2 alterations with contextual memory1Published on the World Wide Web on 28 January 1999.1. Brain Research, 1999, 821, 241-249.	1.1	70
159	Energy metabolism and protein phosphorylation during apoptosis: a phosphorylation study of tau and high-molecular-weight tau in differentiated PC12 cells*. Biochemical Journal, 1999, 340, 51.	1.7	9
160	Novel bimodal effects of the G-protein tissue transglutaminase on adrenoreceptor signalling. Biochemical Journal, 1999, 343, 541-549.	1.7	20
161	Novel bimodal effects of the G-protein tissue transglutaminase on adrenoreceptor signalling. Biochemical Journal, 1999, 343, 541.	1.7	5
162	Energy metabolism and protein phosphorylation during apoptosis: a phosphorylation study of tau and high-molecular-weight tau in differentiated PC12 cells*. Biochemical Journal, 1999, 340, 51-58.	1.7	25

#	Article	IF	CITATIONS
163	Tau Protein in Normal and Alzheimer's Disease Brain: An Update*. Journal of Alzheimer's Disease, 1999, 1, 329-351.	1.2	103
164	The interrelationship between selective tau phosphorylation and microtubule association. Brain Research, 1998, 798, 173-183.	1.1	60
165	Calcineurin inhibition prevents calpain-mediated proteolysis of tau in differentiated PC12 cells. Journal of Neuroscience Research, 1998, 53, 153-164.	1.3	42
166	Enhancement of Peroxynitrite-Induced Apoptosis in PC12 Cells by Fibroblast Growth Factor-1 and Nerve Growth Factor Requires p21Ras Activation and Is Suppressed by Bcl-2. Archives of Biochemistry and Biophysics, 1998, 356, 41-45.	1.4	33
167	Oxidative Stress Inhibits Calpain Activity in Situ. Journal of Biological Chemistry, 1998, 273, 13331-13338.	1.6	87
168	Distinct Nuclear Localization and Activity of Tissue Transglutaminase. Journal of Biological Chemistry, 1998, 273, 11991-11994.	1.6	149
169	Modulation of the in Situ Activity of Tissue Transglutaminase by Calcium and GTP. Journal of Biological Chemistry, 1998, 273, 2288-2295.	1.6	186
170	Tau complexes with phospholipase $C-\hat{l}^3$ in situ. NeuroReport, 1998, 9, 67-71.	0.6	74
171	Tissue Transglutaminase Is an In Situ Substrate of Calpain: Regulation of Activity. Journal of Neurochemistry, 1998, 71, 240-247.	2.1	34
172	'Oxidation Inhibits Substrate Proteolysis by Calpain I but Not Autolysis. Journal of Biological Chemistry, 1997, 272, 2005-2012.	1.6	104
173	Transglutaminase activity is increased in Alzheimer's disease brain. Brain Research, 1997, 751, 323-329.	1.1	179
174	Phosphorylation of microtubule-associated protein tau on Ser 262 by an embryonic 100 kDa protein kinase. Brain Research, 1997, 767, 305-313.	1.1	18
175	Calpains: Intact and active?. BioEssays, 1997, 19, 1011-1018.	1.2	95
176	Involvement of the low-affinity neurotrophin receptor (p75NTR) in apoptosis of differentiated PC12 cells. Neuroscience Research Communications, 1997, 20, 137-146.	0.2	1
177	The Ï,, Protein in Human Cerebrospinal Fluid in Alzheimer's Disease Consists of Proteolytically Derived Fragments. Journal of Neurochemistry, 1997, 68, 430-433.	2.1	154
178	Nerve Growth Factor Protects PC12 Cells Against Peroxynitriteâ€Induced Apoptosis via a Mechanism Dependent on Phosphatidylinositol 3â€Kinase. Journal of Neurochemistry, 1997, 69, 53-59.	2.1	70
179	Ceramide Selectively Decreases Tau Levels in Differentiated PC12 Cells Through Modulation of Calpain I. Journal of Neurochemistry, 1997, 69, 1020-1030.	2.1	37
180	Differential Binding of Apolipoprotein E Isoforms to Tau and Other Cytoskeletal Proteins. Experimental Neurology, 1996, 138, 252-260.	2.0	80

#	Article	IF	CITATIONS
181	Tau protein is phosphorylated by cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase II within its microtubule-binding domains at Ser-262 and Ser-356. Biochemical Journal, 1996, 316, 655-660.	1.7	136
182	The Microtubule-associated Protein Tau Is Extensively Modified with O-linked N-acetylglucosamine. Journal of Biological Chemistry, 1996, 271, 28741-28744.	1.6	296
183	Detection of Phosphorylated Ser262 in Fetal Tau, Adult Tau, and Paired Helical Filament Tau. Journal of Biological Chemistry, 1995, 270, 18917-18922.	1.6	319
184	Metal-catalyzed oxidation of bovine neurofilaments in vitro. Free Radical Biology and Medicine, 1995, 18, 891-899.	1.3	33
185	Postnatal changes in serine/threonine protein phosphatases and their association with the microtubules. Developmental Brain Research, 1995, 90, 54-61.	2.1	21
186	Localization and in Situ Phosphorylation State of Nuclear Tau. Experimental Cell Research, 1995, 220, 332-337.	1.2	87
187	Understanding the hyperphosphorylation of tau in Alzheimer's disease: Importance of examining site-specific phosphorylation in non-disease systems. Neurobiology of Aging, 1995, 16, 371-374.	1.5	31
188	Ï,, Selfâ€Association: Stabilization with a Chemical Crossâ€Linker and Modulation by Phosphorylation and Oxidation State. Journal of Neurochemistry, 1995, 64, 1209-1215.	2.1	33
189	Phosphorylation of Ï,, In Situ: Inhibition of Calciumâ€Dependent Proteolysis. Journal of Neurochemistry, 1995, 65, 903-911.	2.1	52
190	Transglutaminase Cross‣inking of the Ï" Protein. Journal of Neurochemistry, 1995, 65, 1760-1770.	2.1	93
191	Compromised mitochondrial function results in dephosphorylation of tau through a calcium-dependent process in rat brain cerebral cortical slices. Neurochemical Research, 1994, 19, 1151-1158.	1.6	24
192	Monoclonal antibody Alz-50 reacts with bovine and human serum albumin. Journal of Neuroscience Research, 1994, 39, 589-594.	1.3	2
193	Transglutaminase facilitates the formation of polymers of the \hat{l}^2 -amyloid peptide. Brain Research, 1994, 651, 129-133.	1.1	109
194	Pavlovian conditioning alters cortical microtubule-associated protein-2. NeuroReport, 1994, 5, 1045-1048.	0.6	32
195	Calpain-mediated proteolysis of microtubule-associated protein 2 (MAP-2) is inhibited by phosphorylation by cAMP-dependent protein kinase, but not by Ca2+/calmodulin-dependent protein kinase II. Journal of Neuroscience Research, 1993, 34, 642-647.	1.3	56
196	Phosphorylation Modulates Calpain-Mediated Proteolysis and Calmodulin Binding of the 200-kDa and 160-kDa Neurofilament Proteins. Journal of Neurochemistry, 1993, 61, 191-199.	2.1	86
197	Transglutaminase Catalyzes the Formation of Sodium Dodecyl Sulfate-Insoluble, Alz-50-Reactive Polymers of ?. Journal of Neurochemistry, 1993, 61, 1159-1162.	2.1	107
198	Metal (Fe3+) affinity chromatography: differential adsorption of tau phosphoproteins. Journal of Neuroscience Methods, 1993, 46, 245-249.	1.3	2

#	Article	IF	CITATIONS
199	Phosphorylation, calpain proteolysis and tubulin binding of recombinant human tau isoforms. Brain Research, 1993, 604, 32-40.	1.1	58
200	In vitro polymerization of oxidized tau into filaments. Brain Research, 1993, 613, 313-316.	1.1	89
201	Brain casein kinase 2: Affinity purification procedure using immobilized polyethylenimine. Protein Expression and Purification, 1992, 3, 355-361.	0.6	1
202	Alterations of choline acetyltransferase, phosphoinositide hydrolysis, and cytoskeletal proteins in rat brain in response to colchicine administration. Experimental Brain Research, 1992, 89, 496-500.	0.7	6
203	The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. Journal of Neuroscience Research, 1992, 33, 505-512.	1.3	304
204	Differential Phosphorylation of Ï,, by Cyclic AMPâ€Dependent Protein Kinase and Ca ²⁺ /Calmodulinâ€Dependent Protein Kinase II: Metabolic and Functional Consequences. Journal of Neurochemistry, 1992, 59, 2056-2062.	2.1	48
205	Neurotoxic Effects of Dietary Aluminium. Novartis Foundation Symposium, 1992, 169, 254-267.	1.2	7
206	Seizureâ€Induced Protein Tyrosine Phosphorylation in Rat Brain Regions. Epilepsia, 1991, 32, 755-760.	2.6	19
207	Degradation of Microtubule-Associated Protein 2 and Brain Spectrin by Calpain: A Comparative Study. Journal of Neurochemistry, 1991, 56, 1630-1638.	2.1	180
208	Proteolysis of Microtubule-Associated Protein 2 and Tubulin by Cathepsin D. Journal of Neurochemistry, 1991, 57, 1577-1583.	2.1	32
209	The regulatory role of calmodulin in the proteolysis of individual neurofilament proteins by calpain. Neurochemical Research, 1991, 16, 869-873.	1.6	55
210	Oral aluminum alters in vitro protein phosphorylation and kinase activities in rat brain. Neurobiology of Aging, 1990, 11, 209-216.	1.5	49
211	Aluminum Increases Agonist-Stimulated Cyclic AMP Production in Rat Cerebral Cortical Slices. Journal of Neurochemistry, 1989, 53, 258-263.	2.1	18
212	Proteolysis of tau by calpain. Biochemical and Biophysical Research Communications, 1989, 163, 1505-1511.	1.0	174
213	Dose- and time-dependent hippocampal cholinergic lesions induced by ethylcholine mustard aziridinium ion: Effects of nerve growth factor, GM1 ganglioside, and vitamin E. Neurochemical Research, 1988, 13, 685-692.	1.6	25
214	The effects of aluminum on agonist-induced alterations in cyclic AMP and cyclic GMP concentrations in rat brain regions in vivo. Toxicology, 1988, 51, 299-308.	2.0	9
215	Phosphorylation of rat brain cytoskeletal proteins is increased after orally administered aluminum. Brain Research, 1988, 456, 95-103.	1.1	59
216	Aluminum alters cyclic AMP and cyclic GMP levels but not presynaptic cholinergic markers in rat brain in vivo. Brain Research, 1987, 403, 1-6.	1.1	61

#	ARTICLE	IF	CITATIONS
217	In vitro measurements of cholinergic activity in brain regions of hibernating ground squirrels. Brain Research Bulletin, 1987, 18, 663-667.	1.4	6
218	Modulation of carbachol-stimulated inositol phospholipid hydrolysis in rat cerebral cortex. Neurochemical Research, 1987, 12, 693-700.	1.6	45
219	Aluminum increases cyclic AMP in rat cerebral cortex. Life Sciences, 1986, 39, 1301-1305.	2.0	10
220	Aluminum impairs glucose utilization and cholinergic activity in rat brain in vitro. Toxicology, 1986, 40, 93-102.	2.0	67
221	Choline Uptake, Acetylcholine Synthesis and Release, and Halothane Effects in Synaptosomes. Anesthesia and Analgesia, 1985, 64, 395???399.	1.1	13
222	Halothane-Induced Alterations of Glucose and Pyruvate Metabolism in Rat Cerebra Synaptosomes. Journal of Neurochemistry, 1985, 44, 1838-1844.	2.1	2