
Carlos A Canchaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8838974/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion. Microbiology and Molecular Biology Reviews, 2004, 68, 560-602.	2.9	1,412
2	Genomics of <i>Actinobacteria</i> : Tracing the Evolutionary History of an Ancient Phylum. Microbiology and Molecular Biology Reviews, 2007, 71, 495-548.	2.9	852
3	Prophage Genomics. Microbiology and Molecular Biology Reviews, 2003, 67, 238-276.	2.9	594
4	Phage as agents of lateral gene transfer. Current Opinion in Microbiology, 2003, 6, 417-424.	2.3	437
5	The impact of prophages on bacterial chromosomes. Molecular Microbiology, 2004, 53, 9-18.	1.2	366
6	Complete Genome Sequence of the Prototype Lactic Acid Bacterium Lactococcus lactis subsp. cremoris MG1363. Journal of Bacteriology, 2007, 189, 3256-3270.	1.0	362
7	Multireplicon genome architecture of Lactobacillus salivarius. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6718-6723.	3.3	216
8	Analysis of bifidobacterial evolution using a multilocus approach. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2783-2792.	0.8	154
9	Analysis, Characterization, and Loci of the tuf Genes in Lactobacillus and Bifidobacterium Species and Their Direct Application for Species Identification. Applied and Environmental Microbiology, 2003, 69, 6908-6922.	1.4	150
10	Comparative and Functional Analysis of Sortase-Dependent Proteins in the Predicted Secretome of Lactobacillus salivarius UCC118. Applied and Environmental Microbiology, 2006, 72, 4143-4153.	1.4	145
11	The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity. PLoS Genetics, 2009, 5, e1000785.	1.5	141
12	A First Insight into the Genome of the Filter-Feeder Mussel Mytilus galloprovincialis. PLoS ONE, 2016, 11, e0151561.	1.1	124
13	Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology (United Kingdom), 2006, 152, 3185-3196.	0.7	118
14	Massive gene presence-absence variation shapes an open pan-genome in the Mediterranean mussel. Genome Biology, 2020, 21, 275.	3.8	105
15	Comparative genomics of phages and prophages in lactic acid bacteria. Antonie Van Leeuwenhoek, 2002, 82, 73-91.	0.7	96
16	Characterization of the groEL and groES Loci in Bifidobacterium breve UCC 2003: Genetic, Transcriptional, and Phylogenetic Analyses. Applied and Environmental Microbiology, 2004, 70, 6197-6209.	1.4	95
17	Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie Van Leeuwenhoek, 2007, 91, 351-372.	0.7	95
18	Bifidobacterium lactis DSM 10140: Identification of the atp (atpBEFHAGDC) Operon and Analysis of Its Genetic Structure, Characteristics, and Phylogeny. Applied and Environmental Microbiology, 2004, 70, 3110-3121.	1.4	94

CARLOS A CANCHAYA

#	Article	IF	CITATIONS
19	RNA-Seq in Mytilus galloprovincialis: comparative transcriptomics and expression profiles among different tissues. BMC Genomics, 2015, 16, 728.	1.2	86
20	Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei. Applied and Environmental Microbiology, 2006, 72, 3130-3146.	1.4	75
21	Microbial diversity in the human intestine and novel insights from metagenomics. Frontiers in Bioscience - Landmark, 2009, Volume, 3214.	3.0	72
22	Genome Analysis of an Inducible Prophage and Prophage Remnants Integrated in the Streptococcus pyogenes Strain SF370. Virology, 2002, 302, 245-258.	1.1	70
23	Prophage-Like Elements in Bifidobacteria: Insights from Genomics, Transcription, Integration, Distribution, and Phylogenetic Analysis. Applied and Environmental Microbiology, 2005, 71, 8692-8705.	1.4	70
24	Isolation of lactobacilli with probiotic properties from the human stomach. Letters in Applied Microbiology, 2008, 47, 269-274.	1.0	67
25	The prophage sequences of Lactobacillus plantarum strain WCFS1. Virology, 2003, 316, 245-255.	1.1	65
26	Sequence and comparative genomic analysis of lactococcal bacteriophages jj50, 712 and P008: evolutionary insights into the 936 phage species. FEMS Microbiology Letters, 2006, 261, 253-261.	0.7	63
27	GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network. Protein Engineering, Design and Selection, 2007, 20, 405-412.	1.0	56
28	Exploiting Bifidobacterium genomes: The molecular basis of stress response. International Journal of Food Microbiology, 2007, 120, 13-24.	2.1	55
29	Integration and Distribution of Lactobacillus johnsonii Prophages. Journal of Bacteriology, 2003, 185, 4603-4608.	1.0	54
30	The prophages of Lactobacillus johnsonii NCC 533: comparative genomics and transcription analysis. Virology, 2004, 320, 229-242.	1.1	53
31	Distribution of Megaplasmids in Lactobacillus salivarius and Other Lactobacilli. Journal of Bacteriology, 2007, 189, 6128-6139.	1.0	53
32	Comparative Analyses of Prophage-Like Elements Present in Two <i>Lactococcus lactis</i> Strains. Applied and Environmental Microbiology, 2007, 73, 7771-7780.	1.4	52
33	Molecular Characterization of hsp20 , Encoding a Small Heat Shock Protein of Bifidobacterium breve UCC2003. Applied and Environmental Microbiology, 2007, 73, 4695-4703.	1.4	51
34	Polyphasic analysis indicates that Lactobacillus salivarius subsp. salivarius and Lactobacillus salivarius subsp. salicinius do not merit separate subspecies status. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2397-2403.	0.8	50
35	How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators. FEMS Microbiology Reviews, 2006, 30, 734-759.	3.9	48
36	Comparative Genomics of the T4-Like Escherichia coli Phage JS98: Implications for the Evolution of T4 Phages. Journal of Bacteriology, 2004, 186, 8276-8286.	1.0	41

CARLOS A CANCHAYA

#	Article	IF	CITATIONS
37	The ClgR Protein Regulates Transcription of the clpP Operon in Bifidobacterium breve UCC 2003. Journal of Bacteriology, 2005, 187, 8411-8426.	1.0	41
38	Transcription Mapping as a Tool in Phage Genomics: The Case of the Temperate Streptococcus thermophilus Phage Sfi21. Virology, 2002, 296, 62-76.	1.1	40
39	Comparative genomics and proteomics of Helicobacter mustelae, an ulcerogenic and carcinogenic gastric pathogen. BMC Genomics, 2010, 11, 164.	1.2	40
40	Transcription Analysis of Streptococcus thermophilus Phages in the Lysogenic State. Virology, 2002, 302, 21-32.	1.1	39
41	Genetic Characterization of the Bifidobacterium breve UCC 2003 hrcA Locus. Applied and Environmental Microbiology, 2005, 71, 8998-9007.	1.4	29
42	Lactobacillus hordei sp. nov., a bacteriocinogenic strain isolated from malted barley. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2013-2017.	0.8	29
43	Mosaic-Like Sequences Containing Transposon, Phage, and Plasmid Elements among <i>Listeria monocytogenes</i> Plasmids. Applied and Environmental Microbiology, 2010, 76, 4851-4857.	1.4	21
44	Small-scale spatial variation of meiofaunal communities in Lima estuary (NW Portugal) assessed through metabarcoding. Estuarine, Coastal and Shelf Science, 2020, 238, 106683.	0.9	20
45	Comparative genomics of phages and prophages in lactic acid bacteria. , 2002, , 73-91.		14
46	Genome of Rhizobium leucaenae strains CFN 299T and CPAO 29.8: searching for genes related to a successful symbiotic performance under stressful conditions. BMC Genomics, 2016, 17, 534.	1.2	13
47	Meiofauna metabarcoding in Lima estuary (Portugal) suggests high taxon replacement within a background of network stability. Regional Studies in Marine Science, 2020, 38, 101341.	0.4	8
48	The network structure of intertidal meiofaunal communities from environmental DNA metabarcoding surveys in Northwest Iberia. Aquatic Sciences, 2021, 83, 1.	0.6	7
49	Population genomic footprints of environmental pollution pressure in natural populations of the Mediterranean mussel. Marine Genomics, 2019, 45, 11-15.	0.4	5
50	Draft genome sequence of Bradyrhizobium paxllaeri LMTR 21 T isolated from Lima bean (Phaseolus) Tj ETQq0 0	0 rg₿T /Ov	verlock 10 Tf

51 Genome sequence of Bradyrhizobium sp. LMTR 3, a diazotrophic symbiont of Lima bean (Phaseolus) Tj ETQq1 1 0.784314 rgBT /Over

⁵² Patterns of spatial and temporal variation in estuarine meiofaunal communities assessed through DNA metabarcoding: a case study in the Lima estuary (NW Portugal). Frontiers in Marine Science, 0, 6, .

0

1.2