Lars Rehmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8838938/publications.pdf

Version: 2024-02-01

212478 242451 2,471 78 28 47 h-index citations g-index papers 79 79 79 3501 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Impacts of corn stover removal on carbon dioxide and nitrous oxide emissions. Soil Science Society of America Journal, 2021, 85, 1334-1348.	1.2	8
2	Removal of phenolics from aqueous pyrolysis condensate by activated biochar. Canadian Journal of Chemical Engineering, 2021, 99, 2368-2385.	0.9	7
3	Comparative analysis of biorefinery designs based on acetone-butanol-ethanol fermentation under exergetic, techno-economic, and sensitivity analyses towards a sustainability perspective. Journal of Cleaner Production, 2021, 298, 126761.	4.6	26
4	Stover harvest and tillage effects on corn seedling emergence. Agronomy Journal, 2021, 113, 3688-3696.	0.9	2
5	Environmental and Exergetic Analysis of Large-Scale Production of Citric Acid-Coated Magnetite Nanoparticles via Computer-Aided Process Engineering Tools. ACS Omega, 2021, 6, 3644-3658.	1.6	3
6	Online measurement of CO2 and total gas production in parallel anaerobic shake flask cultivations. Biochemical Engineering Journal, 2020, 153, 107418.	1.8	14
7	Comparison of Biobutanol Production Pathways via Acetone–Butanol–Ethanol Fermentation Using a Sustainability Exergy-Based Metric. ACS Omega, 2020, 5, 18710-18730.	1.6	18
8	Increased Selectivity for Butanol in Clostridium Pasteurianum Fermentations via Butyric Acid Addition or Dual Feedstock Strategy. Fermentation, 2020, 6, 67.	1.4	5
9	Feasibility of anaerobic digestion as a treatment for the aqueous pyrolysis condensate (APC) of birch bark. Bioresource Technology, 2020, 307, 123199.	4.8	17
10	Cultivation Strategies of <i>Clostridium autoethanogenum</i> on Xylose and Carbon Monoxide Combination. ACS Sustainable Chemistry and Engineering, 2020, 8, 2632-2639.	3.2	9
11	Self-Synchronized Oscillatory Metabolism of Clostridium pasteurianum in Continuous Culture. Processes, 2020, 8, 137.	1.3	5
12	Noninvasive tool for optical online monitoring of individual biomass concentrations in a defined coculture. Biotechnology and Bioengineering, 2020, 117, 999-1011.	1.7	7
13	Synthesis of FeO@SiO ₂ –DNA core–shell engineered nanostructures for rapid adsorption of heavy metals in aqueous solutions. RSC Advances, 2020, 10, 39284-39294.	1.7	11
14	Physical and Rheological Properties of Active Fluids Under Shear Stress: Suspensions of Synechocystis., 2020,,.		0
15	Increased Butanol Yields through Cosubstrate Fermentation of Jerusalem Artichoke Tubers and Crude Glycerol by <i>Clostridium pasteurianum</i> DSM 525. ACS Omega, 2019, 4, 15521-15529.	1.6	7
16	Recent Developments in the Photocatalytic Treatment of Cyanide Wastewater: An Approach to Remediation and Recovery of Metals. Processes, 2019, 7, 225.	1.3	30
17	Clostridial conversion of corn syrup to Acetone-Butanol-Ethanol (ABE) via batch and fed-batch fermentation. Heliyon, 2019, 5, e01401.	1.4	27
18	Fast media optimization for mixotrophic cultivation of Chlorella vulgaris. Scientific Reports, 2019, 9, 19262.	1.6	16

#	Article	IF	CITATIONS
19	Deep Eutectic Solvents pretreatment of agro-industrial food waste. Biotechnology for Biofuels, 2018, 11, 37.	6.2	94
20	Fermentable Sugar Production from a Coffee Processing By-product after Deep Eutectic Solvent Pretreatment. Bioresource Technology Reports, 2018, 4, 174-180.	1.5	17
21	Efficient Extraction of a Docosahexaenoic Acid (DHA)-Rich Lipid Fraction from Thraustochytrium sp. Using Ionic Liquids. Materials, 2018, 11, 1986.	1.3	19
22	High throughput screening of \hat{l}^2 -glucuronidase (GUS) reporter in transgenic microalgae transformed by Agrobacterium tumefaciens. Algal Research, 2018, 33, 328-336.	2.4	4
23	Spathaspora passalidarum selected for resistance to AFEX hydrolysate shows decreased cell yield. FEMS Yeast Research, 2018, 18, .	1.1	7
24	Assessment of water samples with complex compositions using microalgal bioassay based on the community level physiological profiling (CLPP). Journal of Environmental Management, 2018, 224, 310-314.	3.8	1
25	Current state and future prospects for liquid biofuels in Canada. Biofuel Research Journal, 2018, 5, 759-779.	7.2	43
26	Direct Conversion of the Oleaginous Yeast <i>Rhodosporidium diobovatum</i> to Biodiesel Using the lonic Liquid [C ₂ mim][EtSO ₄]. ACS Sustainable Chemistry and Engineering, 2017, 5, 5562-5570.	3.2	20
27	Development of microalgal bioassay based on the community level physiological profiling (CLPP). Algal Research, 2017, 25, 47-53.	2.4	13
28	Pervaporative butanol removal from PBE fermentation broths for the bioconversion of glycerol by Clostridium pasteurianum. Journal of Membrane Science, 2017, 535, 79-88.	4.1	10
29	Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production. Bioresource Technology, 2017, 243, 464-473.	4.8	78
30	Online measurement of viscosity for biological systems in stirred tank bioreactors. Biotechnology and Bioengineering, 2017, 114, 990-997.	1.7	12
31	A Review of Process-Design Challenges for Industrial Fermentation of Butanol from Crude Glycerol by Non-Biphasic Clostridium pasteurianum. Fermentation, 2016, 2, 13.	1.4	35
32	Pretreatment of Eastern White Pine (Pinus strobes L.) for Enzymatic Hydrolysis and Ethanol Production by Organic Electrolyte Solutions. ACS Sustainable Chemistry and Engineering, 2016, 4, 2822-2829.	3.2	14
33	Lipid accumulation from pinewood pyrolysates by Rhodosporidium diobovatum and Chlorella vulgaris for biodiesel production. Bioresource Technology, 2016, 214, 660-669.	4.8	24
34	The role of 1,3-propanediol production in fermentation of glycerol by Clostridium pasteurianum. Bioresource Technology, 2016, 209, 1-7.	4.8	45
35	Consolidating biofuel platforms through the fermentative bioconversion of crude glycerol to butanol. World Journal of Microbiology and Biotechnology, 2016, 32, 103.	1.7	17
36	Ionic liquids for the fractionation of microalgae biomass. Current Opinion in Green and Sustainable Chemistry, 2016, 2, 22-27.	3.2	60

3

#	Article	IF	Citations
37	Combined Detoxification and In-situ Product Removal by a Single Resin During Lignocellulosic Butanol Production. Scientific Reports, 2016, 6, 30533.	1.6	15
38	Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach. Biotechnology for Biofuels, 2016, 9, 242.	6.2	37
39	Online-ViskositÃtsmessung am Beispiel der Xanthan-Produktion mitXanthomonas campestris. Chemie-Ingenieur-Technik, 2016, 88, 1310-1310.	0.4	О
40	Expression of exoâ€inulinase gene from <scp><i>A</i></scp> <i>spergillus niger</i> 12 in <i>E. coli</i> strain Rosettaâ€gami B (DE3) and its characterization. Biotechnology Progress, 2016, 32, 629-637.	1.3	12
41	Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability. Bioresource Technology, 2016, 216, 12-18.	4.8	29
42	Butanol fermentation from microalgae-derived carbohydrates after ionic liquid extraction. Bioresource Technology, 2016, 206, 77-85.	4.8	76
43	Xylose removal from lignocellulosic biomass via a twin-screw extruder: The effects of screw configurations and operating conditions. Biomass and Bioenergy, 2016, 88, 10-16.	2.9	12
44	Optimization of fermentation condition favoring butanol production from glycerol by Clostridium pasteurianum DSM 525. Bioresource Technology, 2016, 208, 73-80.	4.8	41
45	Disruption and Wet Extraction of the Microalgae <i>Chlorella vulgaris</i> Using Room-Temperature lonic Liquids. ACS Sustainable Chemistry and Engineering, 2016, 4, 591-600.	3.2	129
46	Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresource Technology, 2015, 192, 31-36.	4.8	273
47	The effects of screw elements on enzymatic digestibility of corncobs after pretreatment in a twin-screw extruder. Biomass and Bioenergy, 2015, 74, 224-232.	2.9	23
48	Optimizing Acid Hydrolysis of Jerusalem Artichoke-Derived Inulin for Fermentative Butanol Production. Bioenergy Research, 2015, 8, 1148-1157.	2.2	38
49	High-Throughput Screening of Inhibitory Compounds on Growth and Ethanol Production of Saccharomyces cerevisiae. Bioenergy Research, 2015, 8, 423-430.	2.2	17
50	Impact of butyric acid on butanol formation by Clostridium pasteurianum. Bioresource Technology, 2015, 196, 153-159.	4.8	25
51	Effect of Biodiesel on Biofilm Biodeterioration of Linear Low Density Polyethylene in a Simulated Fuel Storage Tank. Journal of Energy Resources Technology, Transactions of the ASME, 2015, 137, .	1.4	11
52	Improvement of the Nile Red fluorescence assay for determination of total lipid content in microalgae independent of chlorophyll content. Journal of Applied Phycology, 2015, 27, 2181-2189.	1.5	20
53	Extrusion Pretreatment of Lignocellulosic Biomass: A Review. International Journal of Molecular Sciences, 2014, 15, 18967-18984.	1.8	150
54	Enzymatic hydrolysis of steam exploded corncob residues after pretreatment in a twin-screw extruder. Biotechnology Reports (Amsterdam, Netherlands), 2014, 3, 99-107.	2.1	52

#	Article	IF	CITATIONS
55	Effect of gold nanoparticles and ciprofloxacin on microbial catabolism: a communityâ€based approach. Environmental Toxicology and Chemistry, 2014, 33, 44-51.	2.2	17
56	ABE fermentation from enzymatic hydrolysate of NaOH-pretreated corncobs. Biomass and Bioenergy, 2014, 66, 110-115.	2.9	84
57	Enhanced laccase stability through mediator partitioning into hydrophobic ionic liquids. Green Chemistry, 2014, 16, 1462-1469.	4.6	23
58	Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass. Bioresource Technology, 2014, 161, 20-28.	4.8	68
59	Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Bioresource Technology, 2014, 174, 176-181.	4.8	75
60	Geometric Effects on Non-DLVO Forces: Relevance for Nanosystems. Langmuir, 2014, 30, 4623-4632.	1.6	13
61	Optimizing enzymatic hydrolysis of inulin from Jerusalem artichoke tubers for fermentative butanol production. Biomass and Bioenergy, 2014, 69, 175-182.	2.9	50
62	Anaerobic digestibility of estrogens in wastewater sludge: Effect of ultrasonic pretreatment. Journal of Environmental Management, 2014, 145, 307-313.	3.8	15
63	Investigation of biofilm formation on polyethylene in a diesel/biodiesel fuel storage environment. Fuel, 2014, 128, 240-247.	3.4	14
64	Degradation of estrone in water and wastewater by various advanced oxidation processes. Journal of Hazardous Materials, 2014, 278, 16-24.	6.5	69
65	Effect of biodiesel addition on microbial community structure in a simulated fuel storage system. Bioresource Technology, 2013, 147, 456-463.	4.8	11
66	Pyrolysis Byproducts as Feedstocks for Fermentative Biofuel Production: An Evaluation of Inhibitory Compounds through a Synthetic Aqueous Phase. Industrial & Engineering Chemistry Research, 2013, 52, 18234-18240.	1.8	10
67	Measuring the effect of ionic liquids on laccase activity using a simple, parallel method. Green Chemistry, 2012, 14, 725.	4.6	33
68	Enhancement of PCB degradation by <i>Burkholderia xenovorans</i> LB400 in biphasic systems by manipulating culture conditions. Biotechnology and Bioengineering, 2008, 99, 521-528.	1.7	23
69	Biodegradation of PCBs in twoâ€phase partitioning bioreactors following solid extraction from soil. Biotechnology and Bioengineering, 2008, 99, 1273-1280.	1.7	30
70	On the use, and reuse, of polymers for the treatment of hydrocarbon contaminated water via a solid–liquid partitioning bioreactor. Biotechnology Progress, 2008, 24, 839-844.	1.3	22
71	Bioavailability of PCBs in biphasic bioreactors. Biochemical Engineering Journal, 2008, 38, 219-225.	1.8	10
72	Remediation of PAH contaminated soils: Application of a solid–liquid two-phase partitioning bioreactor. Chemosphere, 2008, 73, 798-804.	4.2	65

#	Article	IF	CITATION
73	Biodegradation of biphenyl in a solid–liquid two-phase partitioning bioreactor. Biochemical Engineering Journal, 2007, 36, 195-201.	1.8	37
74	Polymer Selection for Biphenyl Degradation in a Solid-Liquid Two-Phase Partitioning Bioreactor. Biotechnology Progress, 2007, 23, 814-819.	1.3	38
75	Polymer selection for biphenyl degradation in a solid-liquid two-phase partitioning bioreactor. Biotechnology Progress, 2007, 23, 814-9.	1.3	6
76	Biphenyl degradation kinetics by Burkholderia xenovorans LB400 in two-phase partitioning bioreactors. Chemosphere, 2006, 63, 972-979.	4.2	30
77	Inclusion and Release of Hinokitiol into/from MCT- \hat{l}^2 -CD Fixed on Japanese Washi Paper. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 107-111.	1.6	12
78	Characteristics of Modified Î ² -Cyclodextrin Bound to Cellulose Powder. Starch/Staerke, 2003, 55, 313-318.	1.1	30