
## Zhongwei Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8838888/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | 30 Years of Lithium″on Batteries. Advanced Materials, 2018, 30, e1800561.                                                                                                                                                          | 11.1 | 3,039     |
| 2  | Batteries and fuel cells for emerging electric vehicle markets. Nature Energy, 2018, 3, 279-289.                                                                                                                                   | 19.8 | 1,944     |
| 3  | A review on non-precious metal electrocatalysts for PEM fuel cells. Energy and Environmental Science, 2011, 4, 3167.                                                                                                               | 15.6 | 1,651     |
| 4  | Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Advanced<br>Materials, 2017, 29, 1604685.                                                                                                    | 11.1 | 1,143     |
| 5  | A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy and Environmental Science, 2014, 7, 1564.                                                                | 15.6 | 996       |
| 6  | Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions. Angewandte<br>Chemie - International Edition, 2007, 46, 4060-4063.                                                                           | 7.2  | 780       |
| 7  | Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019, 2, 1-28.                                                                                                                | 13.1 | 745       |
| 8  | Siliconâ€Based Anodes for Lithiumâ€ion Batteries: From Fundamentals to Practical Applications. Small, 2018, 14, 1702737.                                                                                                           | 5.2  | 650       |
| 9  | Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. Journal of Power Sources, 2006, 158, 154-159.                                                                              | 4.0  | 570       |
| 10 | New Concepts in Electrolytes. Chemical Reviews, 2020, 120, 6783-6819.                                                                                                                                                              | 23.0 | 554       |
| 11 | A Soluble and Highly Conductive Ionomer for Highâ€Performance Hydroxide Exchange Membrane Fuel<br>Cells. Angewandte Chemie - International Edition, 2009, 48, 6499-6502.                                                           | 7.2  | 541       |
| 12 | High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy<br>Reviews, 2018, 1, 35-53.                                                                                                        | 13.1 | 514       |
| 13 | One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen<br>reduction and evolution activities as an efficient bi-functional electrocatalyst. Journal of Materials<br>Chemistry A, 2013, 1, 4754. | 5.2  | 491       |
| 14 | A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews, 2020, 49, 8790-8839.                                                          | 18.7 | 461       |
| 15 | The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy and Environmental Science, 2016, 9, 357-390.                                              | 15.6 | 456       |
| 16 | Revisiting the Role of Polysulfides in Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1705590.                                                                                                                           | 11.1 | 456       |
| 17 | Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature<br>Proton Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 20774-20781.                                        | 1.5  | 410       |
| 18 | Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable<br>metal–air batteries. Journal of Materials Chemistry A, 2016, 4, 7107-7134.                                                  | 5.2  | 408       |

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Interlayer Material Selection for Lithium-Sulfur Batteries. Joule, 2019, 3, 361-386.                                                                                                      | 11.7 | 406       |
| 20 | Recent Progress in Electrically Rechargeable Zinc–Air Batteries. Advanced Materials, 2019, 31, e1805230.                                                                                  | 11.1 | 398       |
| 21 | Highly Active and Durable Core–Corona Structured Bifunctional Catalyst for Rechargeable<br>Metal–Air Battery Application. Nano Letters, 2012, 12, 1946-1952.                              | 4.5  | 392       |
| 22 | Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell<br>Applications. Journal of Physical Chemistry C, 2009, 113, 21008-21013.                        | 1.5  | 350       |
| 23 | Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells.<br>Carbon, 2010, 48, 3057-3065.                                                          | 5.4  | 347       |
| 24 | Ultrathin, transparent, and flexible graphene films for supercapacitor application. Applied Physics<br>Letters, 2010, 96, .                                                               | 1.5  | 347       |
| 25 | Multifunctional TiO <sub>2</sub> –C/MnO <sub>2</sub> Core–Double-Shell Nanowire Arrays as<br>High-Performance 3D Electrodes for Lithium Ion Batteries. Nano Letters, 2013, 13, 5467-5473. | 4.5  | 338       |
| 26 | Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life<br>lithium–sulfur batteries. Energy and Environmental Science, 2016, 9, 2533-2538.               | 15.6 | 330       |
| 27 | A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie -<br>International Edition, 2019, 58, 9640-9645.                                            | 7.2  | 312       |
| 28 | Recycling of mixed cathode lithiumâ€ion batteries for electric vehicles: Current status and future outlook. , 2020, 2, 6-43.                                                              |      | 300       |
| 29 | Recent Advances in Flexible Zincâ€Based Rechargeable Batteries. Advanced Energy Materials, 2019, 9,<br>1802605.                                                                           | 10.2 | 296       |
| 30 | Engineering Energy Level of Metal Center: Ru Single-Atom Site for Efficient and Durable Oxygen<br>Reduction Catalysis. Journal of the American Chemical Society, 2019, 141, 19800-19806.  | 6.6  | 288       |
| 31 | Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nature<br>Reviews Materials, 2020, 5, 276-294.                                                        | 23.3 | 284       |
| 32 | Nafion/Zeolite Nanocomposite Membrane by in Situ Crystallization for a Direct Methanol Fuel Cell.<br>Chemistry of Materials, 2006, 18, 5669-5675.                                         | 3.2  | 276       |
| 33 | A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc–air batteries. Energy<br>and Environmental Science, 2016, 9, 663-670.                                  | 15.6 | 275       |
| 34 | Free-Standing Layer-By-Layer Hybrid Thin Film of Graphene-MnO <sub>2</sub> Nanotube as Anode for<br>Lithium Ion Batteries. Journal of Physical Chemistry Letters, 2011, 2, 1855-1860.     | 2.1  | 271       |
| 35 | The Current State of Aqueous Zn-Based Rechargeable Batteries. ACS Energy Letters, 2020, 5, 1665-1675.                                                                                     | 8.8  | 271       |
| 36 | Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews, 2020, 49, 5407-5445.                             | 18.7 | 264       |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Biologically Inspired Highly Durable Iron Phthalocyanine Catalysts for Oxygen Reduction Reaction in<br>Polymer Electrolyte Membrane Fuel Cells. Journal of the American Chemical Society, 2010, 132,<br>17056-17058.   | 6.6  | 259       |
| 38 | Orbital Interactions in Bi‧n Bimetallic Electrocatalysts for Highly Selective Electrochemical<br>CO <sub>2</sub> Reduction toward Formate Production. Advanced Energy Materials, 2018, 8, 1802427.                     | 10.2 | 259       |
| 39 | Advanced Extremely Durable 3D Bifunctional Air Electrodes for Rechargeable Zincâ€Air Batteries.<br>Advanced Energy Materials, 2014, 4, 1301389.                                                                        | 10.2 | 258       |
| 40 | Flexible Highâ€Energy Polymerâ€Electrolyteâ€Based Rechargeable Zinc–Air Batteries. Advanced Materials,<br>2015, 27, 5617-5622.                                                                                         | 11.1 | 258       |
| 41 | Pomegranateâ€Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for<br>Rechargeable Metal–Air Batteries. Angewandte Chemie - International Edition, 2016, 55, 4977-4982.                       | 7.2  | 258       |
| 42 | Graphene-Based Flexible Supercapacitors: Pulse-Electropolymerization of Polypyrrole on Free-Standing Graphene Films. Journal of Physical Chemistry C, 2011, 115, 17612-17620.                                          | 1.5  | 255       |
| 43 | Stringed "tube on cube―nanohybrids as compact cathode matrix for high-loading and lean-electrolyte<br>lithium–sulfur batteries. Energy and Environmental Science, 2018, 11, 2372-2381.                                 | 15.6 | 255       |
| 44 | Sulfonated Ordered Mesoporous Carbon as a Stable and Highly Active Protonic Acid Catalyst.<br>Chemistry of Materials, 2007, 19, 2395-2397.                                                                             | 3.2  | 249       |
| 45 | Interpenetrating Triphase Cobaltâ€Based Nanocomposites as Efficient Bifunctional Oxygen<br>Electrocatalysts for Long‣asting Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8,<br>1702900.             | 10.2 | 242       |
| 46 | Hollow Multivoid Nanocuboids Derived from Ternary Ni–Co–Fe Prussian Blue Analog for<br>Dualâ€Electrocatalysis of Oxygen and Hydrogen Evolution Reactions. Advanced Functional Materials,<br>2018, 28, 1802129.         | 7.8  | 242       |
| 47 | Niâ€Rich/Coâ€Poor Layered Cathode for Automotive Liâ€lon Batteries: Promises and Challenges. Advanced<br>Energy Materials, 2020, 10, 1903864.                                                                          | 10.2 | 242       |
| 48 | Preferentially Engineering FeN <sub>4</sub> Edge Sites onto Graphitic Nanosheets for Highly Active<br>and Durable Oxygen Electrocatalysis in Rechargeable Zn–Air Batteries. Advanced Materials, 2020, 32,<br>e2004900. | 11.1 | 235       |
| 49 | Self-Assembled NiO/Ni(OH) <sub>2</sub> Nanoflakes as Active Material for High-Power and High-Energy<br>Hybrid Rechargeable Battery. Nano Letters, 2016, 16, 1794-1802.                                                 | 4.5  | 222       |
| 50 | Development and Simulation of Sulfurâ€doped Graphene Supported Platinum with Exemplary Stability<br>and Activity Towards Oxygen Reduction. Advanced Functional Materials, 2014, 24, 4325-4336.                         | 7.8  | 214       |
| 51 | Facile Hydrothermal Synthesis of VS <sub>2</sub> /Graphene Nanocomposites with Superior High-Rate<br>Capability as Lithium-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2015, 7, 13044-13052.             | 4.0  | 210       |
| 52 | Conductive Nanocrystalline Niobium Carbide as Highâ€Efficiency Polysulfides Tamer for Lithiumâ€Sulfur<br>Batteries. Advanced Functional Materials, 2018, 28, 1704865.                                                  | 7.8  | 210       |
| 53 | Polyaniline-derived Non-Precious Catalyst for the Polymer Electrolyte Fuel Cell Cathode. ECS Transactions, 2008, 16, 159-170.                                                                                          | 0.3  | 209       |
| 54 | Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur<br>batteries. Nature Communications, 2018, 9, 705.                                                                     | 5.8  | 207       |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Lowâ€Bandgap Seâ€Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward<br>Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e1904876.                                                      | 11.1 | 206       |
| 56 | Controllable Urchinâ€Like NiCo <sub>2</sub> S <sub>4</sub> Microsphere Synergized with Sulfurâ€Doped<br>Graphene as Bifunctional Catalyst for Superior Rechargeable Zn–Air Battery. Advanced Functional<br>Materials, 2018, 28, 1706675. | 7.8  | 203       |
| 57 | Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective<br>Nb <sub>2</sub> O <sub>5–<i>x</i></sub> Nanocluster toward Superior Li–S Performance. ACS Nano,<br>2020, 14, 4849-4860.                                | 7.3  | 201       |
| 58 | Carbon Nanotube Film by Filtration as Cathode Catalyst Support for Proton-Exchange Membrane Fuel<br>Cell. Langmuir, 2005, 21, 9386-9389.                                                                                                 | 1.6  | 196       |
| 59 | In Situ Polymer Graphenization Ingrained with Nanoporosity in a Nitrogenous Electrocatalyst<br>Boosting the Performance of Polymerâ€Electrolyteâ€Membrane Fuel Cells. Advanced Materials, 2017, 29,<br>1604456.                          | 11.1 | 192       |
| 60 | Microporous framework membranes for precise molecule/ion separations. Chemical Society Reviews, 2021, 50, 986-1029.                                                                                                                      | 18.7 | 191       |
| 61 | Dynamic electrocatalyst with current-driven oxyhydroxide shell for rechargeable zinc-air battery.<br>Nature Communications, 2020, 11, 1952.                                                                                              | 5.8  | 185       |
| 62 | Flexible Rechargeable Zincâ€Air Batteries through Morphological Emulation of Human Hair Array.<br>Advanced Materials, 2016, 28, 6421-6428.                                                                                               | 11.1 | 183       |
| 63 | Synergistic Engineering of Defects and Architecture in Binary Metal Chalcogenide toward Fast and Reliable Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900228.                                                         | 10.2 | 177       |
| 64 | Synergistic Bifunctional Catalyst Design based on Perovskite Oxide Nanoparticles and Intertwined<br>Carbon Nanotubes for Rechargeable Zinc–Air Battery Applications. ACS Applied Materials &<br>Interfaces, 2015, 7, 902-910.            | 4.0  | 176       |
| 65 | Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a<br>Highâ€Efficiency Lithium Polysulfide Conversion Process. Angewandte Chemie - International Edition,<br>2021, 60, 2371-2378.            | 7.2  | 176       |
| 66 | Two-Dimensional Phosphorus-Doped Carbon Nanosheets with Tunable Porosity for Oxygen Reactions in Zinc-Air Batteries. ACS Catalysis, 2018, 8, 2464-2472.                                                                                  | 5.5  | 175       |
| 67 | Oxygen Reduction on Graphene–Carbon Nanotube Composites Doped Sequentially with Nitrogen and<br>Sulfur. ACS Catalysis, 2014, 4, 2734-2740.                                                                                               | 5.5  | 174       |
| 68 | Lithium-Sulfur Batteries for Commercial Applications. CheM, 2018, 4, 3-7.                                                                                                                                                                | 5.8  | 174       |
| 69 | Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2020, 142, 3583-3592.                                                                              | 6.6  | 174       |
| 70 | Enhancing Oxygen Reduction Activity of Ptâ€based Electrocatalysts: From Theoretical Mechanisms to<br>Practical Methods. Angewandte Chemie - International Edition, 2020, 59, 18334-18348.                                                | 7.2  | 174       |
| 71 | Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochimica Acta, 2012, 69, 295-300.                                                           | 2.6  | 173       |
| 72 | Defect Engineering of Chalcogenâ€Tailored Oxygen Electrocatalysts for Rechargeable Quasiâ€Solidâ€State<br>Zinc–Air Batteries. Advanced Materials, 2017, 29, 1702526.                                                                     | 11.1 | 171       |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy, 2014, 10, 192-200.                                            | 8.2  | 168       |
| 74 | Co–N Decorated Hierarchically Porous Graphene Aerogel for Efficient Oxygen Reduction Reaction in<br>Acid. ACS Applied Materials & Interfaces, 2016, 8, 6488-6495.                                             | 4.0  | 166       |
| 75 | Nitrogen-Doped Carbon Nanotubes as Platinum Catalyst Supports for Oxygen Reduction Reaction in<br>Proton Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2010, 114, 21982-21988.               | 1.5  | 165       |
| 76 | Sulfur Atoms Bridging Few‣ayered MoS <sub>2</sub> with Sâ€Doped Graphene Enable Highly Robust<br>Anode for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1501106.                               | 10.2 | 165       |
| 77 | 3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable Lithium–Sulfur<br>Batteries. Advanced Energy Materials, 2018, 8, 1702381.                                                     | 10.2 | 165       |
| 78 | Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes. Nano Energy, 2015, 15, 746-754.                                                         | 8.2  | 164       |
| 79 | Ptâ~'Ru Supported on Double-Walled Carbon Nanotubes as High-Performance Anode Catalysts for<br>Direct Methanol Fuel Cells. Journal of Physical Chemistry B, 2006, 110, 15353-15358.                           | 1.2  | 163       |
| 80 | 3-Dimensional porous N-doped graphene foam as a non-precious catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 3343-3350.                                                | 5.2  | 163       |
| 81 | Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life<br>lithium-ion batteries. Nature Communications, 2015, 6, 8597.                                               | 5.8  | 163       |
| 82 | Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nature Communications, 2021, 12, 186.                        | 5.8  | 163       |
| 83 | Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur<br>immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy, 2020, 72,<br>104685. | 8.2  | 160       |
| 84 | Template-guided synthesis of Co nanoparticles embedded in hollow nitrogen doped carbon tubes as a<br>highly efficient catalyst for rechargeable Zn-air batteries. Nano Energy, 2020, 71, 104592.              | 8.2  | 157       |
| 85 | Laminated Cross‣inked Nanocellulose/Graphene Oxide Electrolyte for Flexible Rechargeable Zinc–Air<br>Batteries. Advanced Energy Materials, 2016, 6, 1600476.                                                  | 10.2 | 155       |
| 86 | Strings of Porous Carbon Polyhedrons as Self‧tanding Cathode Host for Highâ€Energyâ€Density<br>Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2017, 56, 6176-6180.                      | 7.2  | 153       |
| 87 | Cationic and anionic redox in lithium-ion based batteries. Chemical Society Reviews, 2020, 49, 1688-1705.                                                                                                     | 18.7 | 152       |
| 88 | Rational design of tailored porous carbon-based materials for CO <sub>2</sub> capture. Journal of<br>Materials Chemistry A, 2019, 7, 20985-21003.                                                             | 5.2  | 150       |
| 89 | Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance<br>lithium-ion battery anodes. Nano Energy, 2016, 19, 187-197.                                                       | 8.2  | 148       |
| 90 | Tailoring FeN <sub>4</sub> Sites with Edge Enrichment for Boosted Oxygen Reduction Performance in<br>Proton Exchange Membrane Fuel Cell. Advanced Energy Materials, 2019, 9, 1803737.                         | 10.2 | 148       |

| #   | Article                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | An all-aqueous redox flow battery with unprecedented energy density. Energy and Environmental Science, 2018, 11, 2010-2015.                                                                     | 15.6 | 147       |
| 92  | Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for<br>lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 44, 61-67.                               | 7.1  | 147       |
| 93  | 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc–Air<br>Batteries. Small, 2016, 12, 2707-2714.                                                             | 5.2  | 144       |
| 94  | Hierarchical Defective Fe <sub>3â€</sub> <i><sub>x</sub></i> C@C Hollow Microsphere Enables Fast and<br>Long‣asting Lithium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2001165. | 7.8  | 144       |
| 95  | Engineering Oversaturated Feâ€N <sub>5</sub> Multifunctional Catalytic Sites for Durable<br>Lithiumâ€Sulfur Batteries. Angewandte Chemie - International Edition, 2021, 60, 26622-26629.        | 7.2  | 144       |
| 96  | Recent Progress on Flexible Zn-Air Batteries. Energy Storage Materials, 2021, 35, 538-549.                                                                                                      | 9.5  | 143       |
| 97  | Defect Engineering for Expediting Li–S Chemistry: Strategies, Mechanisms, and Perspectives. Advanced Energy Materials, 2021, 11, 2100332.                                                       | 10.2 | 143       |
| 98  | Highly Active Porous Carbon-Supported Nonprecious Metalâ^'N Electrocatalyst for Oxygen Reduction<br>Reaction in PEM Fuel Cells. Journal of Physical Chemistry C, 2010, 114, 8048-8053.          | 1.5  | 141       |
| 99  | "Two Ships in a Bottle―Design for Zn–Ag–O Catalyst Enabling Selective and Long-Lasting<br>CO <sub>2</sub> Electroreduction. Journal of the American Chemical Society, 2021, 143, 6855-6864.     | 6.6  | 139       |
| 100 | Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells.<br>Nanotechnology, 2006, 17, 5254-5259.                                                           | 1.3  | 137       |
| 101 | Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li–O <sub>2</sub><br>Batteries: Recent Progress and Perspective. Advanced Energy Materials, 2018, 8, 1800348.      | 10.2 | 137       |
| 102 | Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities. Journal of Materials Chemistry A, 2016, 4, 3754-3764.                | 5.2  | 136       |
| 103 | Quasi-Covalently Coupled Ni–Cu Atomic Pair for Synergistic Electroreduction of CO <sub>2</sub> .<br>Journal of the American Chemical Society, 2022, 144, 9661-9671.                             | 6.6  | 134       |
| 104 | Ionothermal Synthesis of Oriented Zeolite AEL Films and Their Application as Corrosionâ€Resistant<br>Coatings. Angewandte Chemie - International Edition, 2008, 47, 525-528.                    | 7.2  | 133       |
| 105 | Determination of Iron Active Sites in Pyrolyzed Iron-Based Catalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 2761-2768.                                                      | 5.5  | 133       |
| 106 | Multidimensional Ordered Bifunctional Air Electrode Enables Flash Reactants Shuttling for<br>Highâ€Energy Flexible Znâ€Air Batteries. Advanced Energy Materials, 2019, 9, 1900911.              | 10.2 | 133       |
| 107 | An Oxygenâ€Vacancyâ€Rich Semiconductorâ€6upported Bifunctional Catalyst for Efficient and Stable<br>Zinc–Air Batteries. Advanced Materials, 2019, 31, e1806761.                                 | 11.1 | 133       |
| 108 | Enhanced Reversible Sodiumâ€lon Intercalation by Synergistic Coupling of Fewâ€Layered MoS <sub>2</sub><br>and Sâ€Doped Graphene. Advanced Functional Materials, 2017, 27, 1702562.              | 7.8  | 132       |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Nitrogen doped carbon nanotubes synthesized from aliphatic diamines for oxygen reduction reaction.<br>Electrochimica Acta, 2011, 56, 1570-1575.                                                                                                          | 2.6  | 131       |
| 110 | Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 225, 496-503. | 10.8 | 131       |
| 111 | Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles<br>as a highly efficient and stable hydrogen evolution electrocatalyst. Nano Energy, 2017, 40, 88-94.                                                    | 8.2  | 128       |
| 112 | Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding?. Energy and Environmental Science, 2017, 10, 296-305.                                                                                            | 15.6 | 127       |
| 113 | Multigrain Platinum Nanowires Consisting of Oriented Nanoparticles Anchored on Sulfurâ€Doped<br>Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst. Advanced Materials, 2015,<br>27, 1229-1234.                                    | 11.1 | 126       |
| 114 | Engineering the Conductive Network of Metal Oxideâ€Based Sulfur Cathode toward Efficient and<br>Longevous Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002076.                                                                        | 10.2 | 126       |
| 115 | Nitrogen-doped carbon nanotubes as air cathode catalysts in zinc-air battery. Electrochimica Acta, 2011, 56, 5080-5084.                                                                                                                                  | 2.6  | 123       |
| 116 | "Ship in a Bottle―Design of Highly Efficient Bifunctional Electrocatalysts for Long-Lasting<br>Rechargeable Zn–Air Batteries. ACS Nano, 2019, 13, 7062-7072.                                                                                             | 7.3  | 120       |
| 117 | Vertically rooting multifunctional tentacles on carbon scaffold as efficient polysulfide barrier toward superior lithium-sulfur batteries. Nano Energy, 2019, 64, 103905.                                                                                | 8.2  | 119       |
| 118 | Magneticâ€Fieldâ€Stimulated Efficient Photocatalytic N <sub>2</sub> Fixation over Defective<br>BaTiO <sub>3</sub> Perovskites. Angewandte Chemie - International Edition, 2021, 60, 11910-11918.                                                         | 7.2  | 119       |
| 119 | Nanotechnology for environmentally sustainable electromobility. Nature Nanotechnology, 2016, 11, 1039-1051.                                                                                                                                              | 15.6 | 117       |
| 120 | Selfâ€Templated Hierarchically Porous Carbon Nanorods Embedded with Atomic Feâ€N <sub>4</sub> Active<br>Sites as Efficient Oxygen Reduction Electrocatalysts in Znâ€Air Batteries. Advanced Functional<br>Materials, 2021, 31, 2008085.                  | 7.8  | 117       |
| 121 | Engineered Si Electrode Nanoarchitecture: A Scalable Postfabrication Treatment for the Production of Next-Generation Li-Ion Batteries. Nano Letters, 2014, 14, 277-283.                                                                                  | 4.5  | 116       |
| 122 | CNT-threaded N-doped porous carbon film as binder-free electrode for high-capacity supercapacitor and Li–S battery. Journal of Materials Chemistry A, 2017, 5, 9775-9784.                                                                                | 5.2  | 115       |
| 123 | Dual phase Li4Ti5O12–TiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries.<br>Nano Energy, 2014, 9, 383-391.                                                                                                                    | 8.2  | 114       |
| 124 | The Dualâ€Play of 3D Conductive Scaffold Embedded with Co, N Codoped Hollow Polyhedra toward<br>Highâ€Performance Li–S Full Cell. Advanced Energy Materials, 2018, 8, 1802561.                                                                           | 10.2 | 114       |
| 125 | A MOFâ€Derivative Decorated Hierarchical Porous Host Enabling Ultrahigh Rates and Superior<br>Longâ€Term Cycling of Dendriteâ€Free Zn Metal Anodes. Advanced Materials, 2022, 34, e2110047.                                                              | 11.1 | 114       |
| 126 | Relating Catalysis between Fuel Cell and Metal-Air Batteries. Matter, 2020, 2, 32-49.                                                                                                                                                                    | 5.0  | 112       |

| #   | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Free‣tanding Functionalized Graphene Oxide Solid Electrolytes in Electrochemical Gas Sensors.<br>Advanced Functional Materials, 2016, 26, 1729-1736.                                                         | 7.8  | 110       |
| 128 | 3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2021, 11, 8837-8846.                                                                   | 5.5  | 110       |
| 129 | d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nature Communications, 2020, 11, 5858.                                          | 5.8  | 109       |
| 130 | Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications<br>in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275. | 10.2 | 109       |
| 131 | Aqueous intercalation-type electrode materials for grid-level energy storage: Beyond the limits of lithium and sodium. Nano Energy, 2018, 50, 229-244.                                                       | 8.2  | 108       |
| 132 | Design of Highly Active Perovskite Oxides for Oxygen Evolution Reaction by Combining Experimental and ab Initio Studies. ACS Catalysis, 2015, 5, 4337-4344.                                                  | 5.5  | 107       |
| 133 | Synthesis and Characterization of γ-Fe <sub>2</sub> O <sub>3</sub> for H <sub>2</sub> S Removal at Low Temperature. Industrial & Engineering Chemistry Research, 2015, 54, 8469-8478.                        | 1.8  | 105       |
| 134 | 3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon microtubes toward high-rate Li-ion capacitors. Nano Energy, 2019, 56, 118-126.                                                  | 8.2  | 105       |
| 135 | Hierarchically Porous Multimetalâ€Based Carbon Nanorod Hybrid as an Efficient Oxygen Catalyst for<br>Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2020, 30, 1908167.                      | 7.8  | 105       |
| 136 | Modulating Metal–Organic Frameworks as Advanced Oxygen Electrocatalysts. Advanced Energy<br>Materials, 2021, 11, 2003291.                                                                                    | 10.2 | 105       |
| 137 | Tantalum-Based Electrocatalyst for Polysulfide Catalysis and Retention for High-Performance<br>Lithium-Sulfur Batteries. Matter, 2020, 3, 920-934.                                                           | 5.0  | 104       |
| 138 | Recessed deposition of TiN into N-doped carbon as a cathode host for superior Li-S batteries performance. Nano Energy, 2018, 54, 1-9.                                                                        | 8.2  | 103       |
| 139 | Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy, 2021, 86, 106094.                                                | 8.2  | 103       |
| 140 | Carbon-Coated Silicon Nanowires on Carbon Fabric as Self-Supported Electrodes for Flexible<br>Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 9551-9558.                                 | 4.0  | 101       |
| 141 | Phase evolution of conversion-type electrode for lithium ion batteries. Nature Communications, 2019, 10, 2224.                                                                                               | 5.8  | 99        |
| 142 | Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction. Nature Communications, 2022, 13, 2486.                                       | 5.8  | 99        |
| 143 | Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction. Electrochimica Acta, 2010, 55, 4799-4804.                                            | 2.6  | 98        |
| 144 | Gas Pickering Emulsion Templated Hollow Carbon for High Rate Performance Lithium Sulfur Batteries.<br>Advanced Functional Materials, 2016, 26, 8408-8417.                                                    | 7.8  | 98        |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | High Performance Hydrogen Fuel Cells with Ultralow Pt Loading Carbon Nanotube Thin Film<br>Catalystsâ€. Journal of Physical Chemistry C, 2007, 111, 17901-17904.                                      | 1.5  | 96        |
| 146 | Constructing metal-free and cost-effective multifunctional separator for high-performance<br>lithium-sulfur batteries. Nano Energy, 2019, 59, 390-398.                                                | 8.2  | 96        |
| 147 | In-situ ion-activated carbon nanospheres with tunable ultramicroporosity for superior CO2 capture.<br>Carbon, 2019, 143, 531-541.                                                                     | 5.4  | 96        |
| 148 | Molecular Sieving in a Nanoporousb-Oriented Pure-Silica-Zeolite MFI Monocrystal Film. Journal of the American Chemical Society, 2004, 126, 4122-4123.                                                 | 6.6  | 95        |
| 149 | Electrolyte Design for Lithium Metal Anodeâ€Based Batteries Toward Extreme Temperature Application.<br>Advanced Science, 2021, 8, e2101051.                                                           | 5.6  | 95        |
| 150 | Coordinatively Deficient Single-atom Fe-N-C Electrocatalyst with Optimized Electronic Structure for<br>High-performance Lithium-sulfur Batteries. Energy Storage Materials, 2022, 46, 269-277.        | 9.5  | 95        |
| 151 | TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries. Nano Energy, 2020, 67, 104208.                            | 8.2  | 93        |
| 152 | Perovskite–Nitrogenâ€Doped Carbon Nanotube Composite as Bifunctional Catalysts for Rechargeable<br>Lithium–Air Batteries. ChemSusChem, 2015, 8, 1058-1065.                                            | 3.6  | 92        |
| 153 | Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells. Journal of Power Sources, 2015, 273, 697-706.                                                  | 4.0  | 92        |
| 154 | Multiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography. Journal of Power Sources, 2016, 307, 496-509.                                                    | 4.0  | 92        |
| 155 | Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced<br>electrode–electrolyte interaction in high-power Li-ion batteries. Nano Energy, 2016, 24, 72-77.                       | 8.2  | 91        |
| 156 | Nitrogen-doped carbon nanocones encapsulating with nickel–cobalt mixed phosphides for enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 16568-16572.                   | 5.2  | 90        |
| 157 | Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells. Nano Energy, 2018, 49, 23-30.                                | 8.2  | 90        |
| 158 | Regulated coordination environment of Ni single atom catalyst toward high-efficiency oxygen electrocatalysis for rechargeable Zinc-air batteries. Energy Storage Materials, 2021, 35, 723-730.        | 9.5  | 89        |
| 159 | Highly durable and active non-precious air cathode catalyst for zinc air battery. Journal of Power Sources, 2011, 196, 3673-3677.                                                                     | 4.0  | 88        |
| 160 | Tuning Shell Numbers of Transition Metal Oxide Hollow Microspheres toward Durable and Superior<br>Lithium Storage. ACS Nano, 2017, 11, 11521-11530.                                                   | 7.3  | 88        |
| 161 | Titanium nitride–carbon nanotube core–shell composites as effective electrocatalyst supports for<br>low temperature fuel cells. Journal of Materials Chemistry, 2012, 22, 3727.                       | 6.7  | 87        |
| 162 | Design of Quasiâ€MOF Nanospheres as a Dynamic Electrocatalyst toward Accelerated Sulfur Reduction<br>Reaction for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2105541. | 11.1 | 87        |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Highly active Co-doped LaMnO 3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zinc–air batteries. Electrochemistry Communications, 2015, 60, 38-41.                              | 2.3  | 86        |
| 164 | Linker-Compensated Metal–Organic Framework with Electron Delocalized Metal Sites for<br>Bifunctional Oxygen Electrocatalysis. Journal of the American Chemical Society, 2022, 144, 4783-4791.                                 | 6.6  | 86        |
| 165 | Quaternized Graphene Oxide Nanocomposites as Fast Hydroxide Conductors. ACS Nano, 2015, 9, 2028-2037.                                                                                                                         | 7.3  | 85        |
| 166 | Zn-free MOFs like MIL-53(Al) and MIL-125(Ti) for the preparation of defect-rich, ultrafine ZnO<br>nanosheets with high photocatalytic performance. Applied Catalysis B: Environmental, 2019, 244,<br>719-731.                 | 10.8 | 85        |
| 167 | Recent Progress on Highâ€Performance Cathode Materials for Zincâ€lon Batteries. Small Structures, 2021,<br>2, 2000064.                                                                                                        | 6.9  | 85        |
| 168 | Oxygen Reduction Reaction Using MnO <sub>2</sub> Nanotubes/Nitrogen-Doped Exfoliated Graphene<br>Hybrid Catalyst for Li-O <sub>2</sub> Battery Applications. Journal of the Electrochemical Society,<br>2013, 160, A344-A350. | 1.3  | 84        |
| 169 | Defectâ€Enriched Nitrogen Doped–Graphene Quantum Dots Engineered<br>NiCo <sub>2</sub> S <sub>4</sub> Nanoarray as Highâ€Efficiency Bifunctional Catalyst for Flexible Znâ€Air<br>Battery. Small, 2019, 15, e1903610.          | 5.2  | 84        |
| 170 | Layerâ€Based Heterostructured Cathodes for Lithiumâ€ion and Sodiumâ€ion Batteries. Advanced Functional<br>Materials, 2019, 29, 1808522.                                                                                       | 7.8  | 82        |
| 171 | High durable PEK-based anion exchange membrane for elevated temperature alkaline fuel cells. Journal of Membrane Science, 2012, 394-395, 193-201.                                                                             | 4.1  | 81        |
| 172 | High-performance flexible electrode based on electrodeposition of polypyrrole/MnO2 on carbon cloth for supercapacitors. Journal of Power Sources, 2016, 326, 357-364.                                                         | 4.0  | 81        |
| 173 | Aligned sulfur-deficient ZnS1â^'x nanotube arrays as efficient catalyzer for high-performance<br>lithium/sulfur batteries. Nano Energy, 2021, 84, 105891.                                                                     | 8.2  | 81        |
| 174 | Functionalized titania nanotube composite membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2011, 36, 6073-6081.                                                  | 3.8  | 80        |
| 175 | Merging Singleâ€Atomâ€Dispersed Iron and Graphitic Carbon Nitride to a Joint Electronic System for<br>Highâ€Efficiency Photocatalytic Hydrogen Evolution. Small, 2019, 15, e1905166.                                          | 5.2  | 80        |
| 176 | Breaking Free from Cobalt Reliance in Lithium-Ion Batteries. IScience, 2020, 23, 101505.                                                                                                                                      | 1.9  | 80        |
| 177 | Superior performance of anion exchange membrane water electrolyzer: Ensemble of producing oxygen vacancies and controlling mass transfer resistance. Applied Catalysis B: Environmental, 2020, 278, 119276.                   | 10.8 | 80        |
| 178 | Platinum nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. Carbon, 2010, 48, 995-1003.                                                                      | 5.4  | 79        |
| 179 | Activated and nitrogen-doped exfoliated graphene as air electrodes for metal–air battery applications.<br>Journal of Materials Chemistry A, 2013, 1, 2639.                                                                    | 5.2  | 79        |
| 180 | Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 9461-9467.                          | 5.2  | 78        |

| #   | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Synthesis of Template-Free Zeolite Nanocrystals by Reverse Microemulsionâ^'Microwave Method.<br>Chemistry of Materials, 2005, 17, 2262-2266.                                                                                                                      | 3.2  | 77        |
| 182 | Morphology and composition controlled platinum–cobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst. Nano Energy, 2014, 10, 135-143.                                                                                                   | 8.2  | 76        |
| 183 | Bioinspired Graphene Oxide Membranes with Dual Transport Mechanisms for Precise Molecular<br>Separation. Advanced Functional Materials, 2019, 29, 1905229.                                                                                                        | 7.8  | 75        |
| 184 | Direct Observation of Defectâ€Aided Structural Evolution in a Nickelâ€Rich Layered Cathode. Angewandte<br>Chemie - International Edition, 2020, 59, 22092-22099.                                                                                                  | 7.2  | 75        |
| 185 | Hierarchical Porous Double-Shelled Electrocatalyst with Tailored Lattice Alkalinity toward<br>Bifunctional Oxygen Reactions for Metal–Air Batteries. ACS Energy Letters, 2017, 2, 2706-2712.                                                                      | 8.8  | 74        |
| 186 | A Lithium–Sulfur Battery using a 2D Current Collector Architecture with a Largeâ€ <b>s</b> ized Sulfur Host<br>Operated under High Areal Loading and Low E/S Ratio. Advanced Materials, 2018, 30, e1804271.                                                       | 11.1 | 74        |
| 187 | Metal-organic framework-derived Nickel Cobalt oxysulfide nanocages as trifunctional electrocatalysts for high efficiency power to hydrogen. Nano Energy, 2019, 58, 680-686.                                                                                       | 8.2  | 74        |
| 188 | A Triphasic Bifunctional Oxygen Electrocatalyst with Tunable and Synergetic Interfacial Structure<br>for Rechargeable Znâ€Air Batteries. Advanced Energy Materials, 2020, 10, 1903003.                                                                            | 10.2 | 74        |
| 189 | Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries.<br>Journal of Energy Chemistry, 2021, 53, 234-240.                                                                                                              | 7.1  | 74        |
| 190 | Electrochemical Synthesis of Perfluorinated Ion Doped Conducting Polyaniline Films Consisting of<br>Helical Fibers and their Reversible Switching between Superhydrophobicity and Superhydrophilicity.<br>Macromolecular Rapid Communications, 2008, 29, 832-838. | 2.0  | 72        |
| 191 | A "trimurti" heterostructured hybrid with an intimate CoO/Co <sub>x</sub> P interface as a robust<br>bifunctional air electrode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020,<br>8, 9177-9184.                                       | 5.2  | 72        |
| 192 | Hydrogen sulfide adsorption on nano-sized zinc oxide/reduced graphite oxide composite at ambient condition. Applied Surface Science, 2013, 276, 646-652.                                                                                                          | 3.1  | 71        |
| 193 | Recent progress in nonâ€precious metal catalysts for PEM fuel cell applications. Canadian Journal of<br>Chemical Engineering, 2013, 91, 1881-1895.                                                                                                                | 0.9  | 71        |
| 194 | Iron- and Nitrogen-Functionalized Graphene Nanosheet and Nanoshell Composites as a Highly Active<br>Electrocatalyst for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 26501-26508.                                                       | 1.5  | 71        |
| 195 | Morphologically controlled Co3O4 nanodisks as practical bi-functional catalyst for rechargeable zinc–air battery applications. Electrochemistry Communications, 2014, 43, 109-112.                                                                                | 2.3  | 71        |
| 196 | Spontaneous weaving: 3D porous PtCu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 236, 359-367.                                                                              | 10.8 | 71        |
| 197 | Sn/SnO2 embedded in mesoporous carbon nanocomposites as negative electrode for lithium ion batteries. Electrochimica Acta, 2013, 87, 844-852.                                                                                                                     | 2.6  | 70        |
| 198 | Solid Oxide Electrolysis of H2O and CO2 to Produce Hydrogen and Low-Carbon Fuels.<br>Electrochemical Energy Reviews, 2021, 4, 508-517.                                                                                                                            | 13.1 | 69        |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Controlled Growth of Platinum Nanowire Arrays on Sulfur Doped Graphene as High Performance<br>Electrocatalyst. Scientific Reports, 2013, 3, 2431.                                                                          | 1.6  | 68        |
| 200 | Ternary Snâ€īiâ€O Electrocatalyst Boosts the Stability and Energy Efficiency of CO <sub>2</sub><br>Reduction. Angewandte Chemie - International Edition, 2020, 59, 12860-12867.                                            | 7.2  | 68        |
| 201 | Facile Synthesis and Evaluation of Nanofibrous Iron–Carbon Based Non-Precious Oxygen Reduction<br>Reaction Catalysts for Li–O <sub>2</sub> Battery Applications. Journal of Physical Chemistry C, 2012,<br>116, 9427-9432. | 1.5  | 67        |
| 202 | Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery. Journal of Power Sources, 2012, 212, 66-72.                                         | 4.0  | 67        |
| 203 | Design of a Sorbent to Enhance Reactive Adsorption of Hydrogen Sulfide. ACS Applied Materials &<br>Interfaces, 2014, 6, 21167-21177.                                                                                       | 4.0  | 67        |
| 204 | All-in-One Graphene Based Composite Fiber: Toward Wearable Supercapacitor. ACS Applied Materials<br>& Interfaces, 2017, 9, 39576-39583.                                                                                    | 4.0  | 67        |
| 205 | High-performance anion exchange membrane alkaline seawater electrolysis. Journal of Materials<br>Chemistry A, 2021, 9, 9586-9592.                                                                                          | 5.2  | 67        |
| 206 | TEM Investigation of Formation Mechanism of Monocrystal-Thickb-Oriented Pure Silica Zeolite MFI<br>Film. Journal of the American Chemical Society, 2004, 126, 10732-10737.                                                 | 6.6  | 66        |
| 207 | Hierarchical Li4Ti5O12-TiO2 composite microsphere consisting of nanocrystals for high power Li-ion batteries. Electrochimica Acta, 2013, 108, 104-111.                                                                     | 2.6  | 66        |
| 208 | Graphene wrapped silicon nanocomposites for enhanced electrochemical performance in lithium ion batteries. Electrochimica Acta, 2014, 130, 127-134.                                                                        | 2.6  | 66        |
| 209 | Electrospun Iron–Polyaniline–Polyacrylonitrile Derived Nanofibers as Non–Precious Oxygen<br>Reduction Reaction Catalysts for PEM Fuel Cells. Electrochimica Acta, 2014, 139, 111-116.                                      | 2.6  | 66        |
| 210 | Densely accessible Fe-Nx active sites decorated mesoporous-carbon-spheres for oxygen reduction<br>towards high performance aluminum-air flow batteries. Applied Catalysis B: Environmental, 2021, 293,<br>120176.          | 10.8 | 66        |
| 211 | Highly active and porous graphene encapsulating carbon nanotubes as a non-precious oxygen reduction electrocatalyst for hydrogen-air fuel cells. Nano Energy, 2016, 26, 267-275.                                           | 8.2  | 65        |
| 212 | Efficient Method of Designing Stable Layered Cathode Material for Sodium Ion Batteries Using<br>Aluminum Doping. Journal of Physical Chemistry Letters, 2017, 8, 5021-5030.                                                | 2.1  | 65        |
| 213 | Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies. Chemical Society Reviews, 2022, 51, 2917-2938.                                                                     | 18.7 | 65        |
| 214 | Bifunctionally active and durable hierarchically porous transition metal-based hybrid electrocatalyst<br>for rechargeable metal-air batteries. Applied Catalysis B: Environmental, 2018, 239, 677-687.                     | 10.8 | 64        |
| 215 | Boron Nitride Membranes with a Distinct Nanoconfinement Effect for Efficient Ethylene/Ethane<br>Separation. Angewandte Chemie - International Edition, 2019, 58, 13969-13975.                                              | 7.2  | 64        |
| 216 | Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction. RSC Advances, 2015, 5, 6195-6206.                           | 1.7  | 63        |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Sulfur Nanogranular Film-Coated Three-Dimensional Graphene Sponge-Based High Power Lithium<br>Sulfur Battery. ACS Applied Materials & Interfaces, 2016, 8, 1984-1991.                                 | 4.0  | 63        |
| 218 | Hierarchical Microâ€Nanoclusters of Bimetallic Layered Hydroxide Polyhedrons as Advanced Sulfur<br>Reservoir for Highâ€Performance Lithium–Sulfur Batteries. Advanced Science, 2021, 8, 2003400.      | 5.6  | 63        |
| 219 | Hierarchically Porous Ti <sub>3</sub> C <sub>2</sub> MXene with Tunable Active Edges and<br>Unsaturated Coordination Bonds for Superior Lithium–Sulfur Batteries. ACS Nano, 2021, 15,<br>19457-19467. | 7.3  | 63        |
| 220 | Materials Engineering toward Durable Electrocatalysts for Proton Exchange Membrane Fuel Cells.<br>Advanced Energy Materials, 2022, 12, .                                                              | 10.2 | 61        |
| 221 | Nitrogen and Sulfur Co-doped Mesoporous Carbon Materials as Highly Efficient Electrocatalysts for<br>Oxygen Reduction Reaction. Electrochimica Acta, 2014, 145, 259-269.                              | 2.6  | 59        |
| 222 | Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid<br>Capacitors. ACS Applied Materials & Interfaces, 2016, 8, 25297-25305.                                   | 4.0  | 59        |
| 223 | A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie, 2019,<br>131, 9742-9747.                                                                               | 1.6  | 59        |
| 224 | Consolidating Lithiothermicâ€Ready Transition Metals for Li <sub>2</sub> Sâ€Based Cathodes. Advanced<br>Materials, 2020, 32, e2002403.                                                                | 11.1 | 59        |
| 225 | Cubic spinel cobalt oxide/multi-walled carbon nanotube composites as an efficient<br>bifunctionalelectrocatalyst for oxygen reaction. Electrochemistry Communications, 2013, 34, 125-129.             | 2.3  | 58        |
| 226 | Facile large-scale synthesis of core–shell structured sulfur@polypyrrole composite and its<br>application in lithium–sulfur batteries with high energy density. Applied Energy, 2016, 175, 522-528.   | 5.1  | 58        |
| 227 | Optimization of sulfur-doped graphene as an emerging platinum nanowires support for oxygen reduction reaction. Nano Energy, 2016, 19, 27-38.                                                          | 8.2  | 58        |
| 228 | Green Solid Electrolyte with Cofunctionalized Nanocellulose/Graphene Oxide Interpenetrating<br>Network for Electrochemical Gas Sensors. Small Methods, 2017, 1, 1700237.                              | 4.6  | 58        |
| 229 | Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable<br>zinc–air batteries. Nanoscale, 2017, 9, 15865-15872.                                             | 2.8  | 58        |
| 230 | Bioinspired Tough Solidâ€ <b>S</b> tate Electrolyte for Flexible Ultralongâ€Life Zinc–Air Battery. Advanced<br>Materials, 2022, 34, e2110585.                                                         | 11.1 | 58        |
| 231 | Highly active Pt–Ru nanowire network catalysts for the methanol oxidation reaction. Catalysis<br>Communications, 2012, 18, 51-54.                                                                     | 1.6  | 57        |
| 232 | Bi-Functional N-Doped CNT/Graphene Composite as Highly Active and Durable Electrocatalyst for<br>Metal Air Battery Applications. Journal of the Electrochemical Society, 2013, 160, A2244-A2250.      | 1.3  | 57        |
| 233 | Highly Active Graphene Nanosheets Prepared via Extremely Rapid Heating as Efficient Zinc-Air Battery<br>Electrode Material. Journal of the Electrochemical Society, 2013, 160, F910-F915.             | 1.3  | 57        |
| 234 | Highly Active and Durable Nanocrystalâ€Decorated Bifunctional Electrocatalyst for Rechargeable<br>Zinc–Air Batteries. ChemSusChem, 2015, 8, 3129-3138.                                                | 3.6  | 57        |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Web-like 3D Architecture of Pt Nanowires and Sulfur-Doped Carbon Nanotube with Superior<br>Electrocatalytic Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 93-98.                 | 3.2  | 57        |
| 236 | Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors. Carbon, 2015, 93, 258-265.       | 5.4  | 56        |
| 237 | The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack.<br>Applied Catalysis B: Environmental, 2015, 162, 133-140.                                       | 10.8 | 56        |
| 238 | Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal–air battery applications. Nanoscale, 2017, 9, 7373-7379.                                          | 2.8  | 56        |
| 239 | Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior. Nano Energy, 2021, 81, 105602.                           | 8.2  | 56        |
| 240 | Li <sub>2</sub> S―or Sâ€Based Lithiumâ€Ion Batteries. Advanced Materials, 2018, 30, e1801190.                                                                                                       | 11.1 | 54        |
| 241 | Fast Charging Li-Ion Batteries for a New Era of Electric Vehicles. Cell Reports Physical Science, 2020, 1, 100212.                                                                                  | 2.8  | 54        |
| 242 | "Sauna―Activation toward Intrinsic Lattice Deficiency in Carbon Nanotube Microspheres for<br>Highâ€Energy and Long‣asting Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2100497.   | 10.2 | 53        |
| 243 | Highly Durable Graphene Nanosheet Supported Iron Catalyst for Oxygen Reduction Reaction in PEM<br>Fuel Cells. Journal of the Electrochemical Society, 2011, 159, B86-B89.                           | 1.3  | 52        |
| 244 | Theoretical insight into highly durable iron phthalocyanine derived non-precious catalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2014, 2, 19707-19716.                  | 5.2  | 52        |
| 245 | High performance porous polybenzimidazole membrane for alkaline fuel cells. International Journal of Hydrogen Energy, 2014, 39, 18405-18415.                                                        | 3.8  | 52        |
| 246 | Dissolving Vanadium into Titanium Nitride Lattice Framework for Rational Polysulfide Regulation in<br>Li–S Batteries. Advanced Energy Materials, 2021, 11, 2003020.                                 | 10.2 | 52        |
| 247 | The role of artificial intelligence in the mass adoption of electric vehicles. Joule, 2021, 5, 2296-2322.                                                                                           | 11.7 | 52        |
| 248 | Emerging Trends in Sustainable CO <sub>2</sub> â€Management Materials. Advanced Materials, 2022, 34,<br>e2201547.                                                                                   | 11.1 | 52        |
| 249 | Design Criteria for Siliconâ€Based Anode Binders in Half and Full Cells. Advanced Energy Materials, 2022, 12, .                                                                                     | 10.2 | 52        |
| 250 | Selective Dibenzothiophene Adsorption on Graphene Prepared Using Different Methods. Industrial<br>& Engineering Chemistry Research, 2012, 51, 10259-10264.                                          | 1.8  | 51        |
| 251 | Building sponge-like robust architectures of CNT–graphene–Si composites with enhanced rate and cycling performance for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3962-3967. | 5.2  | 51        |
| 252 | A solution-phase synthesis method to highly active Pt-Co/C electrocatalysts for proton exchange membrane fuel cell. Journal of Power Sources, 2010, 195, 2534-2540.                                 | 4.0  | 50        |

| #   | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte. Nature Communications, 2019, 10, 1890.                                                                                                          | 5.8  | 49        |
| 254 | Decoupled low-cost ammonium-based electrolyte design for highly stable zinc–iodine redox flow batteries. Energy Storage Materials, 2020, 32, 465-476.                                                                                                           | 9.5  | 48        |
| 255 | From bulk to interface: electrochemical phenomena and mechanism studies in batteries <i>via</i> electrochemical quartz crystal microbalance. Chemical Society Reviews, 2021, 50, 10743-10763.                                                                   | 18.7 | 48        |
| 256 | Selfâ€Supported Cobalt Nickel Nitride Nanowires Electrode for Overall Electrochemical Water<br>Splitting. Energy Technology, 2017, 5, 1908-1911.                                                                                                                | 1.8  | 47        |
| 257 | Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries. Chemical Engineering Journal, 2020, 384, 123237.                                                                                  | 6.6  | 47        |
| 258 | Constructing Safe and Durable Highâ€Voltage P2 Layered Cathodes for Sodium Ion Batteries Enabled by<br>Molecular Layer Deposition of Alucone. Advanced Functional Materials, 2020, 30, 1910251.                                                                 | 7.8  | 47        |
| 259 | Defect engineering on three-dimensionally ordered macroporous phosphorus doped Co3O4‑î́<br>microspheres as an efficient bifunctional electrocatalyst for Zn-air batteries. Energy Storage<br>Materials, 2021, 41, 427-435.                                      | 9.5  | 47        |
| 260 | Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for<br>direct ethanol fuel cells. Nanotechnology, 2010, 21, 165705.                                                                                                 | 1.3  | 45        |
| 261 | Cyanamide derived thin film on carbon nanotubes as metal free oxygen reduction reaction electrocatalyst. Electrochimica Acta, 2012, 59, 8-13.                                                                                                                   | 2.6  | 45        |
| 262 | Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene<br>Nanosheets: High-Performance Anode Material for Lithium-Ion Battery. ACS Applied Materials &<br>Interfaces, 2014, 6, 13757-13764.                                  | 4.0  | 45        |
| 263 | Enhanced adsorption of hydrogen sulfide and regeneration ability on the composites of zinc oxide with reduced graphite oxide. Chemical Engineering Journal, 2014, 253, 264-273.                                                                                 | 6.6  | 45        |
| 264 | Highly active and durable Pt–Co nanowire networks catalyst for the oxygen reduction reaction in PEMFCs. International Journal of Hydrogen Energy, 2016, 41, 18592-18601.                                                                                        | 3.8  | 45        |
| 265 | Compact high volumetric and areal capacity lithium sulfur batteries through rock salt induced nano-architectured sulfur hosts. Journal of Materials Chemistry A, 2017, 5, 21435-21441.                                                                          | 5.2  | 45        |
| 266 | 2D Materials for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2022, 34, e2108079.                                                                                                                                                                   | 11.1 | 45        |
| 267 | Heat-Treated Nonprecious Catalyst Using Fe and Nitrogen-Rich<br>2,3,7,8-Tetra(pyridin-2-yl)pyrazino[2,3- <i>g</i> ]quinoxaline Coordinated Complex for Oxygen Reduction<br>Reaction in PEM Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 18856-18862. | 1.5  | 44        |
| 268 | A Gasâ€Phase Migration Strategy to Synthesize Atomically Dispersed Mnâ€N  Catalysts for Zn–Air<br>Batteries. Small Methods, 2021, 5, e2100024.                                                                                                                  | 4.6  | 44        |
| 269 | Efficient and Durable Anion Exchange Membrane Water Electrolysis for a Commercially Available<br>Electrolyzer Stack using Alkaline Electrolyte. ACS Energy Letters, 2022, 7, 2576-2583.                                                                         | 8.8  | 44        |
| 270 | Molecular Trapping Strategy To Stabilize Subnanometric Pt Clusters for Highly Active<br>Electrocatalysis. ACS Catalysis, 2019, 9, 11603-11613.                                                                                                                  | 5.5  | 43        |

| #   | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Carbon-pore-sheathed cobalt nanoseeds: An exceptional and durable bifunctional catalyst for zinc-air batteries. Nano Energy, 2019, 65, 104051.                                                                                                          | 8.2  | 43        |
| 272 | A 3D ordered hierarchically porous non-carbon electrode for highly effective and efficient capacitive deionization. Journal of Materials Chemistry A, 2019, 7, 15633-15639.                                                                             | 5.2  | 43        |
| 273 | A Combined Ordered Macroâ€Mesoporous Architecture Design and Surface Engineering Strategy for<br>Highâ€Performance Sulfur Immobilizer in Lithium–Sulfur Batteries. Small, 2020, 16, e2001089.                                                           | 5.2  | 43        |
| 274 | Hierarchically Nanostructured Solid‣tate Electrolyte for Flexible Rechargeable Zinc–Air Batteries.<br>Angewandte Chemie - International Edition, 2022, 61, .                                                                                            | 7.2  | 43        |
| 275 | Morphology-controlled synthesis of metal-organic frameworks derived lattice plane-altered iron oxide for efficient trifunctional electrocatalysts. Nano Energy, 2021, 82, 105699.                                                                       | 8.2  | 42        |
| 276 | Simultaneous formation of nitrogen and sulfur-doped transition metal catalysts for oxygen reduction reaction through pyrolyzing carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt. Journal of Power Sources, 2014, 266, 88-98. | 4.0  | 41        |
| 277 | Engineered architecture of nitrogenous graphene encapsulating porous carbon with nano-channel reactors enhancing the PEM fuel cell performance. Nano Energy, 2017, 42, 249-256.                                                                         | 8.2  | 41        |
| 278 | Parasitic electrodeposition in Zn-MnO2 batteries and its suppression for prolonged cyclability. Energy Storage Materials, 2021, 36, 478-484.                                                                                                            | 9.5  | 41        |
| 279 | Evolution of atomic-scale dispersion of FeNx in hierarchically porous 3D air electrode to boost the interfacial electrocatalysis of oxygen reduction in PEMFC. Nano Energy, 2021, 83, 105734.                                                           | 8.2  | 41        |
| 280 | Phosphorus and Nitrogen Centers in Doped Graphene and Carbon Nanotubes Analyzed through<br>Solid-State NMR. Journal of Physical Chemistry C, 2018, 122, 6593-6601.                                                                                      | 1.5  | 40        |
| 281 | Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced<br>Throughâ€Plane Conductivity of 3D Hybridized Structure. Small, 2020, 16, e1903315.                                                                 | 5.2  | 40        |
| 282 | Integrating Nanoreactor with O–Nb–C Heterointerface Design and Defects Engineering Toward<br>Highâ€Efficiency and Longevous Sodium Ion Battery. Advanced Energy Materials, 2022, 12, .                                                                  | 10.2 | 40        |
| 283 | Carbon-supported Pt nanowire as novel cathode catalysts for proton exchange membrane fuel cells.<br>Journal of Power Sources, 2014, 262, 488-493.                                                                                                       | 4.0  | 39        |
| 284 | Surface decorated cobalt sulfide as efficient catalyst for oxygen evolution reaction and its intrinsic activity. Journal of Catalysis, 2018, 367, 43-52.                                                                                                | 3.1  | 39        |
| 285 | A high performance wastewater-fed flow-photocatalytic fuel cell. Journal of Power Sources, 2019, 425, 69-75.                                                                                                                                            | 4.0  | 39        |
| 286 | Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy, 2020, 77, 105212.                                                                                                             | 8.2  | 39        |
| 287 | Synergistic Binary Fe–Co Nanocluster Supported on Defective Tungsten Oxide as Efficient Oxygen<br>Reduction Electrocatalyst in Zincâ€Air Battery. Advanced Science, 2022, 9, e2104237.                                                                  | 5.6  | 39        |
| 288 | Three-dimensionally ordered mesoporous Co3O4 decorated with Mg as bifunctional oxygen electrocatalysts for high-performance zinc-air batteries. Nano Energy, 2022, 100, 107425.                                                                         | 8.2  | 39        |

| #   | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Correlation between theoretical descriptor and catalytic oxygen reduction activity of graphene supported palladium and palladium alloy electrocatalysts. Journal of Power Sources, 2015, 300, 1-9.            | 4.0  | 38        |
| 290 | Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity. ACS Applied Materials & Interfaces, 2017, 9, 28604-28611.                                                | 4.0  | 38        |
| 291 | Deep-Breathing Honeycomb-like Co-Nx-C Nanopolyhedron Bifunctional Oxygen Electrocatalysts for<br>Rechargeable Zn-Air Batteries. IScience, 2020, 23, 101404.                                                   | 1.9  | 38        |
| 292 | Insights into Multiphase Reactions during Self-Discharge of Li-S Batteries. Chemistry of Materials, 2020, 32, 4518-4526.                                                                                      | 3.2  | 38        |
| 293 | High Performance Porous Anode Based on Template-Free Synthesis of Co3O4 Nanowires for<br>Lithium-Ion Batteries. Electrochimica Acta, 2014, 139, 145-151.                                                      | 2.6  | 37        |
| 294 | Nano-particle size effect on the performance of Li4Ti5O12 spinel. Electrochimica Acta, 2016, 196, 33-40.                                                                                                      | 2.6  | 37        |
| 295 | Strings of Porous Carbon Polyhedrons as Self‣tanding Cathode Host for Highâ€Energyâ€Density<br>Lithium–Sulfur Batteries. Angewandte Chemie, 2017, 129, 6272-6276.                                             | 1.6  | 37        |
| 296 | Atomic-scale manipulation of electrode surface to construct extremely stable high-performance sodium ion capacitor. Nano Energy, 2018, 48, 107-116.                                                           | 8.2  | 37        |
| 297 | NbOx nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst. Nano Energy, 2020, 69, 104455.                                                                     | 8.2  | 37        |
| 298 | Unsaturated coordination polymer frameworks as multifunctional sulfur reservoir for fast and durable lithium-sulfur batteries. Nano Energy, 2021, 79, 105393.                                                 | 8.2  | 37        |
| 299 | Establishing the Preferential Adsorption of Anionâ€Dominated Solvation Structures in the Electrolytes<br>for Highâ€Energyâ€Density Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2011109. | 7.8  | 37        |
| 300 | Eutectic Etching toward Inâ€Plane Porosity Manipulation of Clâ€Terminated MXene for Highâ€Performance<br>Dualâ€Ion Battery Anode. Advanced Energy Materials, 2022, 12, 2102493.                               | 10.2 | 37        |
| 301 | "Soft on rigid―nanohybrid as the self-supporting multifunctional cathode electrocatalyst for<br>high-performance lithium-polysulfide batteries. Nano Energy, 2020, 78, 105293.                                | 8.2  | 36        |
| 302 | Advanced Electrode Materials Comprising of Structureâ€Engineered Quantum Dots for<br>Highâ€Performance Asymmetric Microâ€6upercapacitors. Advanced Energy Materials, 2020, 10, 1903724.                       | 10.2 | 36        |
| 303 | Mechanistic analysis of highly active nitrogen-doped carbon nanotubes for the oxygen reduction reaction. Journal of Power Sources, 2012, 205, 215-221.                                                        | 4.0  | 35        |
| 304 | Application of Artificial Intelligence to State-of-Charge and State-of-Health Estimation of<br>Calendar-Aged Lithium-Ion Pouch Cells. Journal of the Electrochemical Society, 2019, 166, A605-A615.           | 1.3  | 35        |
| 305 | Effects of Diffusive Charge Transfer and Salt Concentration Gradient in Electrolyte on Li-ion Battery Energy and Power Densities. Electrochimica Acta, 2014, 125, 117-123.                                    | 2.6  | 34        |
| 306 | Black BaTiO3 as multifunctional sulfur immobilizer for superior lithium sulfur batteries. Journal of<br>Power Sources, 2019, 434, 226729.                                                                     | 4.0  | 34        |

| #   | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Regulating the Li <sup>+</sup> â€Solvation Structure of Ester Electrolyte for Highâ€Energyâ€Density Lithium<br>Metal Batteries. Small, 2020, 16, e2004688.                                                                            | 5.2  | 34        |
| 308 | Self-assembly of colloidal MOFs derived yolk-shelled microcages as flexible air cathode for rechargeable Zn-air batteries. Nano Energy, 2021, 89, 106314.                                                                             | 8.2  | 34        |
| 309 | Representative volume element model of lithium-ion battery electrodes based on X-ray<br>nano-tomography. Journal of Applied Electrochemistry, 2017, 47, 281-293.                                                                      | 1.5  | 33        |
| 310 | Embellished hollow spherical catalyst boosting activity and durability for oxygen reduction reaction. Nano Energy, 2018, 51, 745-753.                                                                                                 | 8.2  | 33        |
| 311 | Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy<br>Materials, 2022, 12, .                                                                                                                   | 10.2 | 33        |
| 312 | Metalâ€Organicâ€Frameworkâ€Derived Co Nanoparticles Deposited on Nâ€Doped Bimodal Mesoporous Carbon<br>Nanorods as Efficient Bifunctional Catalysts for Rechargeable Zincâ^'Air Batteries. ChemElectroChem,<br>2018, 5, 1868-1873.    | 1.7  | 32        |
| 313 | A highly sensitive breathable fuel cell gas sensor with nanocomposite solid electrolyte. InformaÄnÃ-<br>MateriA¡ly, 2019, 1, 234-241.                                                                                                 | 8.5  | 32        |
| 314 | 3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying Anode Deposition for Enhanced Sodium Storage. Advanced Energy Materials, 2019, 9, 1900673.                                                                       | 10.2 | 32        |
| 315 | Design Zwitterionic Amorphous Conjugated Micro″Mesoporous Polymer Assembled Nanotentacle as<br>Highly Efficient Sulfur Electrocatalyst for Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2021,<br>11, 2101926.                | 10.2 | 32        |
| 316 | Pd-decorated three-dimensional nanoporous Au/Ni foam composite electrodes for<br>H <sub>2</sub> O <sub>2</sub> reduction. Journal of Materials Chemistry A, 2014, 2, 16474-16479.                                                     | 5.2  | 31        |
| 317 | Molecular Functionalization of Graphene Oxide for Next-Generation Wearable Electronics. ACS<br>Applied Materials & Interfaces, 2016, 8, 25428-25437.                                                                                  | 4.0  | 31        |
| 318 | <i>In Situ</i> Localized Polysulfide Injector for the Activation of Bulk Lithium Sulfide. Journal of the American Chemical Society, 2021, 143, 2185-2189.                                                                             | 6.6  | 31        |
| 319 | Highly Durable Platinum-Cobalt Nanowires by Microwave Irradiation as Oxygen Reduction Catalyst for PEM Fuel Cell. Electrochemical and Solid-State Letters, 2012, 15, B83.                                                             | 2.2  | 30        |
| 320 | Effect of electrode physical and chemical properties on lithium-ion battery performance.<br>International Journal of Energy Research, 2013, 37, 1723-1736.                                                                            | 2.2  | 30        |
| 321 | Hierarchical Core–Shell Nickel Cobaltite Chestnutâ€like Structures as Bifunctional Electrocatalyst<br>for Rechargeable Metal–Air Batteries. ChemSusChem, 2018, 11, 406-414.                                                           | 3.6  | 30        |
| 322 | Three-Dimensional Modeling of All-Solid-State Lithium-Ion Batteries Using Synchrotron Transmission<br>X-ray Microscopy Tomography. Journal of the Electrochemical Society, 2020, 167, 100558.                                         | 1.3  | 30        |
| 323 | Range-extending Zinc-air battery for electric vehicle. AIMS Energy, 2018, 6, 121-145.                                                                                                                                                 | 1.1  | 30        |
| 324 | Thin Film Polyamide Nanocomposite Membrane Decorated by Polyphenol-Assisted<br>Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> MXene Nanosheets for Reverse Osmosis. ACS<br>Applied Materials & Interfaces, 2022, 14, 1838-1849. | 4.0  | 30        |

| #   | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Heavily nitrogen-doped acetylene black as a high-performance catalyst for oxygen reduction reaction.<br>Carbon, 2017, 117, 12-19.                                                                                              | 5.4  | 29        |
| 326 | Boron Nitride Membranes with a Distinct Nanoconfinement Effect for Efficient Ethylene/Ethane<br>Separation. Angewandte Chemie, 2019, 131, 14107-14113.                                                                         | 1.6  | 29        |
| 327 | Micron-sized secondary Si/C composite with in situ crosslinked polymeric binder for high-energy-density lithium-ion battery anode. Electrochimica Acta, 2019, 309, 157-165.                                                    | 2.6  | 29        |
| 328 | Atomic scale manipulation of sublayer with functional TiO2 nanofilm toward high-performance reverse osmosis membrane. Desalination, 2020, 480, 114342.                                                                         | 4.0  | 29        |
| 329 | Analogous Mixed Matrix Membranes with Selfâ€Assembled Interface Pathways. Angewandte Chemie -<br>International Edition, 2021, 60, 5864-5870.                                                                                   | 7.2  | 29        |
| 330 | Ordered macroporous design of sacrificial Co/VN nano-heterojunction as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Chemical Engineering Journal, 2022, 433, 133509.                               | 6.6  | 29        |
| 331 | Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature. Applied Surface Science, 2013, 280, 360-365.                                                              | 3.1  | 28        |
| 332 | Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 24159-24167.                                     | 5.2  | 28        |
| 333 | Facile solid-state synthesis of eco-friendly sodium iron silicate with exceptional sodium storage behaviour. Electrochimica Acta, 2018, 283, 1384-1389.                                                                        | 2.6  | 28        |
| 334 | Ultrafine, high-loading and oxygen-deficient cerium oxide embedded on mesoporous carbon<br>nanosheets for superior lithium–oxygen batteries. Nano Energy, 2020, 71, 104570.                                                    | 8.2  | 28        |
| 335 | Supramolecular preorganization effect to access single cobalt sites for enhanced photocatalytic hydrogen evolution and nitrogen fixation. Chemical Engineering Journal, 2020, 394, 124822.                                     | 6.6  | 27        |
| 336 | Tin oxide - mesoporous carbon composites as platinum catalyst supports for ethanol oxidation and oxygen reduction. Electrochimica Acta, 2014, 121, 421-427.                                                                    | 2.6  | 26        |
| 337 | Self-Supported Single Crystalline H <sub>2</sub> Ti <sub>8</sub> O <sub>17</sub> Nanoarrays as<br>Integrated Three-Dimensional Anodes for Lithium-Ion Microbatteries. ACS Applied Materials &<br>Interfaces, 2014, 6, 568-574. | 4.0  | 26        |
| 338 | Effects of structural design on the performance of electrical double layer capacitors. Applied Energy, 2015, 138, 631-639.                                                                                                     | 5.1  | 26        |
| 339 | A fundamental understanding of the Fe/Ti doping induced structure formation process to realize controlled synthesis of layer-tunnel Na0.6MnO2 cathode. Nano Energy, 2020, 70, 104539.                                          | 8.2  | 26        |
| 340 | Precise synthesis of Fe–N2 with N vacancies coordination for boosting electrochemical artificial N2<br>fixation. Applied Catalysis B: Environmental, 2021, 293, 120216.                                                        | 10.8 | 26        |
| 341 | Multigrain electrospun nickel doped lithium titanate nanofibers with high power lithium ion storage.<br>Journal of Materials Chemistry A, 2016, 4, 12638-12647.                                                                | 5.2  | 25        |
| 342 | The Absence and Importance of Operando Techniques for Metalâ€Free Catalysts. Advanced Materials,<br>2019, 31, e1805609.                                                                                                        | 11.1 | 25        |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Evidence for interfacial geometric interactions at metal–support interfaces and their influence on<br>the electroactivity and stability of Pt nanoparticles. Journal of Materials Chemistry A, 2020, 8,<br>1368-1377. | 5.2  | 25        |
| 344 | Selfâ€Assembly of Spinel Nanocrystals into Mesoporous Spheres as Bifunctionally Active Oxygen<br>Reduction and Evolution Electrocatalysts. ChemSusChem, 2017, 10, 2258-2266.                                          | 3.6  | 24        |
| 345 | Highly durable 3D conductive matrixed silicon anode for lithium-ion batteries. Journal of Power<br>Sources, 2018, 407, 84-91.                                                                                         | 4.0  | 24        |
| 346 | New Interpretation of the Performance of Nickel-Based Air Electrodes for Rechargeable Zinc–Air<br>Batteries. Journal of Physical Chemistry C, 2018, 122, 20153-20166.                                                 | 1.5  | 24        |
| 347 | Enhancing Oxygen Reduction Activity of Ptâ€based Electrocatalysts: From Theoretical Mechanisms to<br>Practical Methods. Angewandte Chemie, 2020, 132, 18490-18504.                                                    | 1.6  | 24        |
| 348 | Design of ultralong single-crystal nanowire-based bifunctional electrodes for efficient oxygen and hydrogen evolution in a mild alkaline electrolyte. Journal of Materials Chemistry A, 2017, 5, 10895-10901.         | 5.2  | 23        |
| 349 | Space-confined catalyst design toward ultrafine Pt nanoparticles with enhanced oxygen reduction activity and durability. Journal of Power Sources, 2020, 473, 228607.                                                 | 4.0  | 23        |
| 350 | Heterogeneous Nanodomain Electrolytes for Ultra‣ong‣ife Allâ€Solidâ€State Lithiumâ€Metal Batteries.<br>Advanced Functional Materials, 2022, 32, .                                                                     | 7.8  | 23        |
| 351 | Durability and Activity Study of Single-Walled, Double-Walled and Multi-Walled Carbon Nanotubes<br>Supported Pt Catalyst for PEMFCs. ECS Transactions, 2007, 11, 1289-1299.                                           | 0.3  | 22        |
| 352 | Advanced Biowasteâ€Based Flexible Photocatalytic Fuel Cell as a Green Wearable Power Generator.<br>Advanced Materials Technologies, 2017, 2, 1600191.                                                                 | 3.0  | 22        |
| 353 | An ion conductive polyimide encapsulation: New insight and significant performance enhancement of sodium based P2 layered cathodes. Energy Storage Materials, 2019, 22, 168-178.                                      | 9.5  | 22        |
| 354 | Water balancing. Nature Energy, 2020, 5, 12-13.                                                                                                                                                                       | 19.8 | 22        |
| 355 | Twoâ€Dimensional NiO@Câ€N Nanosheets Composite as a Superior Lowâ€Temperature Anode Material for<br>Advanced Lithiumâ€/Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 3616-3622.                                    | 1.7  | 22        |
| 356 | Engineering Oversaturated Feâ€N <sub>5</sub> Multifunctional Catalytic Sites for Durable<br>Lithium‣ulfur Batteries. Angewandte Chemie, 2021, 133, 26826-26833.                                                       | 1.6  | 22        |
| 357 | Finelyâ€Dispersed Ni <sub>2</sub> Co Nanoalloys on Flowerâ€Like Graphene Microassembly Empowering a<br>Biâ€Service Matrix for Superior Lithium–Sulfur Electrochemistry. Advanced Functional Materials, 2022,<br>32, . | 7.8  | 22        |
| 358 | Hot-Chemistry Structural Phase Transformation in Single-Crystal Chalcogenides for Long-Life Lithium<br>Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 20603-20612.                                       | 4.0  | 21        |
| 359 | High performance organic sodium-ion hybrid capacitors based on nano-structured disodium rhodizonate rivaling inorganic hybrid capacitors. Green Chemistry, 2018, 20, 4920-4931.                                       | 4.6  | 21        |
| 360 | Elucidating and tackling capacity fading of zinc-iodine redox flow batteries. Chemical Engineering<br>Journal, 2021, 412, 128499.                                                                                     | 6.6  | 21        |

| #   | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Pomegranateâ€Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for<br>Rechargeable Metal–Air Batteries. Angewandte Chemie, 2016, 128, 5061-5066.                                                                                                | 1.6 | 20        |
| 362 | Improved Composite Solid Electrolyte through Ionic Liquid-Assisted Polymer Phase for Solid-State<br>Lithium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A1785-A1792.                                                                               | 1.3 | 20        |
| 363 | Cationic–anionic redox couple gradient to immunize against irreversible processes of Li-rich layered oxides. Journal of Materials Chemistry A, 2021, 9, 2325-2333.                                                                                                       | 5.2 | 20        |
| 364 | Engineering checkerboard-like heterostructured sulfur electrocatalyst towards high-performance<br>lithium sulfur batteries. Chemical Engineering Journal, 2022, 440, 135990.                                                                                             | 6.6 | 20        |
| 365 | The plasticizer-free composite block copolymer electrolytes for ultralong lifespan all-solid-state<br>lithium-metal batteries. Nano Energy, 2022, 100, 107499.                                                                                                           | 8.2 | 20        |
| 366 | Synthesis and structural evolution of Pt nanotubular skeletons: revealing the source of the instability of nanostructured electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 12663-12671.                                                                      | 5.2 | 19        |
| 367 | Synchrotron X-ray nano computed tomography based simulation of stress evolution in LiMn2O4 electrodes. Electrochimica Acta, 2017, 247, 1103-1116.                                                                                                                        | 2.6 | 19        |
| 368 | In Situ Engineering of Intracellular Hemoglobin for Implantable Highâ€Performance Biofuel Cells.<br>Angewandte Chemie - International Edition, 2019, 58, 6663-6668.                                                                                                      | 7.2 | 19        |
| 369 | Magneticâ€Fieldâ€Stimulated Efficient Photocatalytic N 2 Fixation over Defective BaTiO 3 Perovskites.<br>Angewandte Chemie, 2021, 133, 12017-12025.                                                                                                                      | 1.6 | 18        |
| 370 | Effect of convective mass transfer on lead-acid battery performance. Electrochimica Acta, 2013, 97, 278-288.                                                                                                                                                             | 2.6 | 17        |
| 371 | Nitrogen and sulfur co-doped mesoporous carbon as cathode catalyst for H2/O2 alkaline membrane<br>fuel cell – effect of catalyst/bonding layer loading. International Journal of Hydrogen Energy, 2016,<br>41, 9159-9166.                                                | 3.8 | 17        |
| 372 | Nonprecious Electrocatalysts for Li-Air and Zn-Air batteries: Fundamentals and recent advances. IEEE<br>Nanotechnology Magazine, 2017, 11, 29-55.                                                                                                                        | 0.9 | 16        |
| 373 | Rational design of interlayer binding towards highly reversible anion intercalation cathode for dual ion batteries. Nano Energy, 2021, 81, 105643.                                                                                                                       | 8.2 | 16        |
| 374 | Nitrogen Doped Carbon Nanotube Thin Films as Efficient Oxygen Reduction Catalyst for Alkaline Anion<br>Exchange Membrane Fuel Cell. ECS Transactions, 2010, 28, 63-68.                                                                                                   | 0.3 | 15        |
| 375 | Direct Observation of Defectâ€Aided Structural Evolution in a Nickelâ€Rich Layered Cathode. Angewandte<br>Chemie, 2020, 132, 22276-22283.                                                                                                                                | 1.6 | 15        |
| 376 | Manipulating Auâ^'CeO <sub>2</sub> Interfacial Structure Toward Ultrahigh Mass Activity and Selectivity for CO <sub>2</sub> Reduction. ChemSusChem, 2020, 13, 6621-6628.                                                                                                 | 3.6 | 15        |
| 377 | Modified chalcogens with a tuned nano-architecture for high energy density and long life hybrid super capacitors. Journal of Materials Chemistry A, 2017, 5, 7523-7532.                                                                                                  | 5.2 | 14        |
| 378 | Morphological and Electrochemical Characterization of Nanostructured<br>Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> Electrodes Using Multiple Imaging Mode Synchrotron<br>X-ray Computed Tomography. Journal of the Electrochemical Society, 2017, 164, A2861-A2871. | 1.3 | 14        |

| #   | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 379 | Fast production of zinc–hexamethylenetetramine complex microflowers as an advanced sulfur<br>reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8,<br>5062-5069.                                            | 5.2  | 14        |
| 380 | Biomimetic design of monolithic fuel cell electrodes with hierarchical structures. Nano Energy, 2016, 20, 57-67.                                                                                                                                          | 8.2  | 13        |
| 381 | Zn-air Batteries: Interpenetrating Triphase Cobalt-Based Nanocomposites as Efficient Bifunctional<br>Oxygen Electrocatalysts for Long-Lasting Rechargeable Zn-Air Batteries (Adv. Energy Mater. 15/2018).<br>Advanced Energy Materials, 2018, 8, 1870068. | 10.2 | 13        |
| 382 | A Near-Isotropic Proton-Conducting Porous Graphene Oxide Membrane. ACS Nano, 2020, 14, 14947-14959.                                                                                                                                                       | 7.3  | 13        |
| 383 | Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a<br>Highâ€Efficiency Lithium Polysulfide Conversion Process. Angewandte Chemie, 2021, 133, 2401-2408.                                                       | 1.6  | 13        |
| 384 | Hierarchically Nanostructured Solid‣tate Electrolyte for Flexible Rechargeable Zinc–Air Batteries.<br>Angewandte Chemie, 2022, 134, .                                                                                                                     | 1.6  | 13        |
| 385 | Elevated rate capability of sulfur wrapped with thin rGO layers for lithium–sulfur batteries. RSC<br>Advances, 2015, 5, 29370-29374.                                                                                                                      | 1.7  | 12        |
| 386 | Heat-Treated Non-precious Metal Catalysts for Oxygen Reduction. , 2016, , 41-68.                                                                                                                                                                          |      | 12        |
| 387 | Selfâ€Assembled Facilitated Transport Membranes with Tunable Carrier Distribution for<br>Ethylene/Ethane Separation. Advanced Functional Materials, 2021, 31, 2104349.                                                                                    | 7.8  | 12        |
| 388 | Iron-tetracyanobenzene complex derived non-precious catalyst for oxygen reduction reaction.<br>Electrochimica Acta, 2015, 162, 224-229.                                                                                                                   | 2.6  | 11        |
| 389 | A Polyanion Host as a Prospective High Voltage Cathode Material for Sodium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1822-A1828.                                                                                                 | 1.3  | 11        |
| 390 | Engineering Solvation Complex–Membrane Interaction to Suppress Cation Crossover in 3 V Cuâ€Al<br>Battery. Small, 2020, 16, 2003438.                                                                                                                       | 5.2  | 11        |
| 391 | Recent Development of Non-precious Metal Catalysts. Lecture Notes in Energy, 2013, , 247-269.                                                                                                                                                             | 0.2  | 10        |
| 392 | Constructing a stable 3†V high-energy sodium ion capacitor using environmentally benign Na2FeSiO4<br>anode and activated carbon cathode. Electrochimica Acta, 2019, 327, 134959.                                                                          | 2.6  | 10        |
| 393 | In Situ Engineering of Intracellular Hemoglobin for Implantable Highâ€Performance Biofuel Cells.<br>Angewandte Chemie, 2019, 131, 6735-6740.                                                                                                              | 1.6  | 10        |
| 394 | A Novel Design of High-Temperature Polymer Electrolyte Membrane Acetone Fuel Cell Sensor. Sensors and Actuators B: Chemical, 2021, 329, 129006.                                                                                                           | 4.0  | 10        |
| 395 | Effect of Scan Range on Pt Surface Area Loss in Potential Cycling Experiments. ECS Transactions, 2007, 11, 1227-1233.                                                                                                                                     | 0.3  | 9         |
|     |                                                                                                                                                                                                                                                           |      |           |

Carbon Dioxide Electroreduction: Orbital Interactions in Biâ€5n Bimetallic Electrocatalysts for Highly 396 Selective Electrochemical CO<sub>2</sub> Reduction toward Formate Production (Adv. Energy) Tj ETQq0 0 0 rgBTi¢Qverloc№ 10 Tf 50 5

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 397 | Na2CoPO4F as a pseudocapacitive anode for high-performance and ultrastable hybrid sodium-ion capacitors. Electrochimica Acta, 2020, 342, 136024.                                                                                                         | 2.6  | 9         |
| 398 | Conductive oxide support design and synergistic engineering of bimetallic high-performance electrocatalyst for oxygen reduction reaction. Chemical Engineering Journal, 2022, 442, 136266.                                                               | 6.6  | 9         |
| 399 | lonic interaction-mediated interlayer repulsion force promotes steadily shuttling of Zn2+ ions within VOPO4. Nano Energy, 2022, 98, 107268.                                                                                                              | 8.2  | 9         |
| 400 | Durability Investigation of Cup-Stacked Carbon Nanotubes Supported Pt as PEMFC Catalyst. ECS Transactions, 2006, 3, 677-683.                                                                                                                             | 0.3  | 8         |
| 401 | N,N′-Bis(salicylidene)ethylenediamine as a nitrogen-rich precursor to synthesize electrocatalysts with<br>high methanol-tolerance for polymer electrolyte membrane fuel cell oxygen reduction reaction.<br>Journal of Power Sources, 2014, 260, 349-356. | 4.0  | 8         |
| 402 | Platinumâ€Palladium Core–Shell Nanoflower Catalyst with Improved Activity and Excellent Durability<br>for the Oxygen Reduction Reaction. Advanced Materials Interfaces, 2018, 5, 1701508.                                                                | 1.9  | 8         |
| 403 | Nitrogen-doped graphene–TiO <sub>x</sub> N <sub>y</sub> nanocomposite electrode for highly efficient capacitive deionization. RSC Advances, 2019, 9, 28186-28193.                                                                                        | 1.7  | 8         |
| 404 | Ternary Snâ€īiâ€O Electrocatalyst Boosts the Stability and Energy Efficiency of CO 2 Reduction.<br>Angewandte Chemie, 2020, 132, 12960-12967.                                                                                                            | 1.6  | 8         |
| 405 | High Voltage Stability and Characterization of P2â€Na 0.66 Mn 1―y Mg y O 2 Cathode for Sodiumâ€lon<br>Batteries. ChemElectroChem, 2020, 7, 3284-3290.                                                                                                    | 1.7  | 8         |
| 406 | Stabilization of platinum–nickel alloy nanoparticles with a sulfur-doped graphene support in polymer electrolyte membrane fuel cells. RSC Advances, 2016, 6, 112226-112231.                                                                              | 1.7  | 7         |
| 407 | Fuel Cells: Tailoring FeN <sub>4</sub> Sites with Edge Enrichment for Boosted Oxygen Reduction<br>Performance in Proton Exchange Membrane Fuel Cell (Adv. Energy Mater. 11/2019). Advanced Energy<br>Materials, 2019, 9, 1970031.                        | 10.2 | 7         |
| 408 | Highly Stable Low-Cost Electrochemical Gas Sensor with an Alcohol-Tolerant N,S-Codoped<br>Non-Precious Metal Catalyst Air Cathode. ACS Sensors, 2021, 6, 752-763.                                                                                        | 4.0  | 7         |
| 409 | Self-templated poly schiff base-Fe derived Fe-N co-doped porous carbon nanosheets for efficient electrocatalysis. Chemical Engineering Journal, 2022, 430, 132315.                                                                                       | 6.6  | 7         |
| 410 | Evidence of Morphological Change in Sulfur Cathodes upon Irradiation by Synchrotron X-rays. ACS<br>Energy Letters, 2022, 7, 577-582.                                                                                                                     | 8.8  | 7         |
| 411 | Improved Synthesis Method for a Cyanamide Derived Non-Precious ORR Catalyst for PEFCs. ECS Transactions, 2010, 28, 39-46.                                                                                                                                | 0.3  | 6         |
| 412 | Multifunctional Nano-Architecting of Si Electrode for High-Performance Lithium-Ion Battery Anode.<br>Journal of the Electrochemical Society, 2019, 166, A2776-A2783.                                                                                     | 1.3  | 6         |
| 413 | Rational Design of Environmental Benign Organic–Inorganic Hybrid as a Prospective Cathode for<br>Stable High-Voltage Sodium Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 11464-11475.                                                      | 1.5  | 6         |
| 414 | Lithiumâ€Sulfur Batteries: Lowâ€Bandgap Seâ€Deficient Antimony Selenide as a Multifunctional Polysulfide<br>Barrier toward Highâ€Performance Lithium–Sulfur Batteries (Adv. Mater. 4/2020). Advanced Materials,<br>2020, 32, 2070030.                    | 11.1 | 6         |

| #   | Article                                                                                                                                                                                                                                         | IF       | CITATIONS            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| 415 | Zinc–Air Batteries: Flexible Rechargeable Zincâ€Air Batteries through Morphological Emulation of<br>Human Hair Array (Adv. Mater. 30/2016). Advanced Materials, 2016, 28, 6420-6420.                                                            | 11.1     | 5                    |
| 416 | Nonâ€Preciousâ€Metal Oxygen Reduction Reaction Electrocatalysis. ChemElectroChem, 2018, 5, 1743-1744.                                                                                                                                           | 1.7      | 5                    |
| 417 | Reviving zinc-air batteries with high-density metal particles on carbon. Science Bulletin, 2020, 65, 1511-1513.                                                                                                                                 | 4.3      | 5                    |
| 418 | Mesocrystallizing Nanograins for Enhanced Li + Storage. Advanced Energy Materials, 2021, 11, 2100503.                                                                                                                                           | 10.2     | 5                    |
| 419 | Nanoporous Carbon-Supported Fe/Co-N Electrocatalyst for Oxygen Reduction Reaction in PEM Fuel Cells. ECS Transactions, 2010, 28, 101-112.                                                                                                       | 0.3      | 4                    |
| 420 | Electrochemistry: Development and Simulation of Sulfur-doped Graphene Supported Platinum with<br>Exemplary Stability and Activity Towards Oxygen Reduction (Adv. Funct. Mater. 27/2014). Advanced<br>Functional Materials, 2014, 24, 4324-4324. | 7.8      | 4                    |
| 421 | Reconciled Nanoarchitecture with Overlapped 2 D Anatomy for Highâ€Energy Hybrid Supercapacitors.<br>Energy Technology, 2017, 5, 1919-1926.                                                                                                      | 1.8      | 4                    |
| 422 | Highly Efficient Removal of Suspended Solid Pollutants from Wastewater by Magnetic<br>Fe <sub>3</sub> O <sub>4</sub> â€Graphene Oxides Nanocomposite. ChemistrySelect, 2018, 3, 11643-11648.                                                    | 0.7      | 4                    |
| 423 | Conformal formation of Carbon-TiOX matrix encapsulating silicon for high-performance lithium-ion battery anode. Journal of Power Sources, 2018, 399, 98-104.                                                                                    | 4.0      | 4                    |
| 424 | Inside Cover: Ionothermal Synthesis of Oriented Zeolite AEL Films and Their Application as<br>Corrosion-Resistant Coatings (Angew. Chem. Int. Ed. 3/2008). Angewandte Chemie - International<br>Edition, 2007, 47, 420-420.                     | 7.2      | 3                    |
| 425 | Electrochemical Gas Sensors: Free-Standing Functionalized Graphene Oxide Solid Electrolytes in<br>Electrochemical Gas Sensors (Adv. Funct. Mater. 11/2016). Advanced Functional Materials, 2016, 26,<br>1670-1670.                              | 7.8      | 3                    |
| 426 | Zinc–Air Batteries: An Oxygenâ€Vacancyâ€Rich Semiconductorâ€6upported Bifunctional Catalyst for<br>Efficient and Stable Zinc–Air Batteries (Adv. Mater. 6/2019). Advanced Materials, 2019, 31, 1970043.                                         | 11.1     | 3                    |
| 427 | Analogous Mixed Matrix Membranes with Selfâ€Assembled Interface Pathways. Angewandte Chemie, 2021, 133, 5928-5934.                                                                                                                              | 1.6      | 3                    |
| 428 | A Robust Bundled and Wrapped Structure Design of Ultrastable Silicon Anodes for Antiaging<br>Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 5540-5550.                                                                           | 2.5      | 3                    |
| 429 | Titelbild: A Soluble and Highly Conductive Ionomer for High-Performance Hydroxide Exchange<br>Membrane Fuel Cells (Angew. Chem. 35/2009). Angewandte Chemie, 2009, 121, 6481-6481.                                                              | 1.6      | 2                    |
| 430 | Cover Picture: A Soluble and Highly Conductive Ionomer for High-Performance Hydroxide Exchange<br>Membrane Fuel Cells (Angew. Chem. Int. Ed. 35/2009). Angewandte Chemie - International Edition, 2009,<br>48, 6363-6363.                       | 7.2      | 2                    |
| 431 | Electrocatalysts: Multigrain Platinum Nanowires Consisting of Oriented Nanoparticles Anchored on<br>Sulfur-Doped Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst (Adv. Mater.) Tj ETQq1                                | 1 017843 | 14 <b>2</b> gBT /Ove |
| 432 | Sodium Ion Batteries: 3D Nanowire Arrayed Cu Current Collector toward Homogeneous Alloying<br>Anode Deposition for Enhanced Sodium Storage (Adv. Energy Mater. 28/2019). Advanced Energy<br>Materials, 2019, 9, 1970111.                        | 10.2     | 2                    |

| #   | Article                                                                                                                                                                                                                                              | IF                | CITATIONS          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 433 | Integrating Nanoreactor with O–Nb–C Heterointerface Design and Defects Engineering Toward<br>Highâ€Efficiency and Longevous Sodium Ion Battery (Adv. Energy Mater. 18/2022). Advanced Energy<br>Materials, 2022, 12, .                               | 10.2              | 2                  |
| 434 | Batteries: Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries (Adv. Mater.) Tj ETQqO                                                                                                                                     | 0 0 rgBT /0       | Overlock 10 T      |
| 435 | Batteries: Gas Pickering Emulsion Templated Hollow Carbon for High Rate Performance Lithium Sulfur<br>Batteries (Adv. Funct. Mater. 46/2016). Advanced Functional Materials, 2016, 26, 8563-8563.                                                    | 7.8               | 1                  |
| 436 | Rücktitelbild: A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction (Angew.) Tj ETQo                                                                                                                                           | 10 0 0 rgB<br>1.6 | T /Overlock 1<br>1 |
| 437 | The Waterloo Institute for Nanotechnology: Societal Impact and a Sustainable Future. ACS Nano, 2019, 13, 12247-12253.                                                                                                                                | 7.3               | 1                  |
| 438 | Rücktitelbild: Magneticâ€Field‣timulated Efficient Photocatalytic N <sub>2</sub> Fixation over<br>Defective BaTiO <sub>3</sub> Perovskites (Angew. Chem. 21/2021). Angewandte Chemie, 2021, 133,<br>12252-12252.                                     | 1.6               | 1                  |
| 439 | Li–S Batteries: "Sauna―Activation toward Intrinsic Lattice Deficiency in Carbon Nanotube<br>Microspheres for Highâ€Energy and Longâ€Lasting Lithium–Sulfur Batteries (Adv. Energy Mater. 26/2021).<br>Advanced Energy Materials, 2021, 11, 2170099.  | 10.2              | 1                  |
| 440 | Lithium–Sulfur Batteries: Hierarchical Defective Fe <sub>3â€</sub> <i><sub>x</sub></i> C@C Hollow<br>Microsphere Enables Fast and Longâ€Lasting Lithium–Sulfur Batteries (Adv. Funct. Mater. 22/2020).<br>Advanced Functional Materials, 2020, 30, . | 7.8               | 1                  |
| 441 | A MOFâ€Derivative Decorated Hierarchical Porous Host Enabling Ultrahigh Rates and Superior<br>Longâ€Term Cycling of Dendriteâ€Free Zn Metal Anodes (Adv. Mater. 14/2022). Advanced Materials, 2022, 34,                                              | 11.1              | 1                  |
| 442 | Cu/Fe dual atoms catalysts derived from Cu-MOF for Zn-air batteries. Materials Today Energy, 2022, 28,<br>101086.                                                                                                                                    | 2.5               | 1                  |
| 443 | Synthesis of Template-Free Zeolite Nanocrystals by Reverse Microemulsion—Microwave Method<br>ChemInform, 2005, 36, no.                                                                                                                               | 0.1               | 0                  |
| 444 | Effect of Catalyst Support Morphology on the PEMFC Performance. ECS Meeting Abstracts, 2006, , .                                                                                                                                                     | 0.0               | 0                  |
| 445 | Durability and Activity Study of Single-Walled, Double-Walled and Multi-Walled Carbon Nanotubes<br>Supported Pt Catalyst for PEMFCs. ECS Meeting Abstracts, 2007, , .                                                                                | 0.0               | 0                  |
| 446 | Innentitelbild: Ionothermal Synthesis of Oriented Zeolite AEL Films and Their Application as<br>Corrosion-Resistant Coatings (Angew. Chem. 3/2008). Angewandte Chemie, 2007, 120, 428-428.                                                           | 1.6               | 0                  |
| 447 | Advanced Materials for Zn–Air Rechargeable Batteries. Electrochemical Energy Storage and Conversion, 2015, , 171-182.                                                                                                                                | 0.0               | 0                  |
| 448 | Rücktitelbild: Ternary Snâ€īiâ€O Electrocatalyst Boosts the Stability and Energy Efficiency of<br>CO <sub>2</sub> Reduction (Angew. Chem. 31/2020). Angewandte Chemie, 2020, 132, 13224-13224.                                                       | 1.6               | 0                  |
| 449 | Innentitelbild: Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere<br>Electrocatalyst for a Highâ€Efficiency Lithium Polysulfide Conversion Process (Angew. Chem. 5/2021).<br>Angewandte Chemie, 2021, 133, 2198-2198.         | 1.6               | 0                  |
| 450 | Highly Active and Stable Non-Precious Metal Catalyst for Oxygen Reduction Reaction in Zinc Air<br>Battery Application. ECS Meeting Abstracts, 2011, , .                                                                                              | 0.0               | 0                  |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 451 | Nickel-based Cathode for Li-ion Batteries. , 2020, , 204-226.                                                                                                                                                         |      | 0         |
| 452 | Design of Quasiâ€MOF Nanospheres as a Dynamic Electrocatalyst toward Accelerated Sulfur Reduction<br>Reaction for Highâ€Performance Lithium–Sulfur Batteries (Adv. Mater. 2/2022). Advanced Materials,<br>2022, 34, . | 11.1 | 0         |
| 453 | Frontispiz: Engineering Oversaturated Feâ€N <sub>5</sub> Multifunctional Catalytic Sites for Durable<br>Lithiumâ€ <del>S</del> ulfur Batteries. Angewandte Chemie, 2021, 133, .                                       | 1.6  | 0         |