
Juliette Van Steenwinckel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8838857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current status of chemokines in the adult CNS. Progress in Neurobiology, 2013, 104, 67-92.	2.8	193
2	CCL2 Released from Neuronal Synaptic Vesicles in the Spinal Cord Is a Major Mediator of Local Inflammation and Pain after Peripheral Nerve Injury. Journal of Neuroscience, 2011, 31, 5865-5875.	1.7	177
3	Neurochemokines: a menage a trois providing new insights on the functions of chemokines in the central nervous system. Journal of Neurochemistry, 2011, 118, 680-694.	2.1	115
4	Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain, 2019, 142, 3806-3833.	3.7	97
5	Melatonin Promotes Oligodendroglial Maturation of Injured White Matter in Neonatal Rats. PLoS ONE, 2009, 4, e7128.	1.1	94
6	The Chemokine CCL2 Increases Na _v 1.8 Sodium Channel Activity in Primary Sensory Neurons through a Gβγ-Dependent Mechanism. Journal of Neuroscience, 2011, 31, 18381-18390.	1.7	89
7	Neuroinflammation, myelin and behavior: Temporal patterns following mild traumatic brain injury in mice. PLoS ONE, 2017, 12, e0184811.	1.1	86
8	Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8246-E8255.	3.3	81
9	Inflammationâ€induced sensitization of the brain in term infants. Developmental Medicine and Child Neurology, 2015, 57, 17-28.	1.1	79
10	A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target. Nature Communications, 2018, 9, 3561.	5.8	75
11	Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nature Communications, 2017, 8, 428.	5.8	74
12	Serotonin 5-HT2A receptor involvement and Fos expression at the spinal level in vincristine-induced neuropathy in the rat. Pain, 2008, 140, 305-322.	2.0	65
13	Microglial production of quinolinic acid as a target and a biomarker of the antidepressant effect of ketamine. Brain, Behavior, and Immunity, 2019, 81, 361-373.	2.0	65
14	Brain damage of the preterm infant: new insights into the role of inflammation. Biochemical Society Transactions, 2014, 42, 557-563.	1.6	59
15	Neuroinflammation in preterm babies and autism spectrum disorders. Pediatric Research, 2019, 85, 155-165.	1.1	59
16	Role of spinal serotonin 5-HT2A receptor in 2′,3′-dideoxycytidine-induced neuropathic pain in the rat and the mouse. Pain, 2008, 137, 66-80.	2.0	46
17	Src family kinases involved in CXCL12-induced loss of acute morphine analgesia. Brain, Behavior, and Immunity, 2014, 38, 38-52.	2.0	44
18	Stromal cell-derived CCL2 drives neuropathic pain states through myeloid cell infiltration in injured nerve. Brain, Behavior, and Immunity, 2015, 45, 198-210.	2.0	44

JULIETTE VAN STEENWINCKEL

#	Article	IF	CITATIONS
19	The 5-HT2A receptor is mainly expressed in nociceptive sensory neurons in rat lumbar dorsal root ganglia. Neuroscience, 2009, 161, 838-846.	1.1	41
20	Failure of thyroid hormone treatment to prevent inflammation-induced white matter injury in the immature brain. Brain, Behavior, and Immunity, 2014, 37, 95-102.	2.0	39
21	Microglia-Mediated Neurodegeneration in Perinatal Brain Injuries. Biomolecules, 2021, 11, 99.	1.8	32
22	Maternal inflammation modulates infant immune response patterns to viral lung challenge in a murine model. Pediatric Research, 2014, 76, 33-40.	1.1	29
23	Antinociceptive effect of peripheral serotonin 5-HT2B receptor activation on neuropathic pain. Pain, 2012, 153, 1320-1331.	2.0	27
24	The immune-inflammatory response of oligodendrocytes in a murine model of preterm white matter injury: the role of TLR3 activation. Cell Death and Disease, 2021, 12, 166.	2.7	26
25	Myelination induction by a histamine H3 receptor antagonist in a mouse model of preterm white matter injury. Brain, Behavior, and Immunity, 2018, 74, 265-276.	2.0	25
26	Involvement of the synapseâ€specific zinc transporter ZnT3 in cadmiumâ€induced hippocampal neurotoxicity. Journal of Cellular Physiology, 2019, 234, 15872-15884.	2.0	18
27	<scp>miR</scp> â€146b Protects the Perinatal Brain against Microgliaâ€Induced Hypomyelination. Annals of Neurology, 2022, 91, 48-65.	2.8	17
28	Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics?. Biochemical Pharmacology, 2021, 186, 114461.	2.0	11
29	Perinatal IL-1β-induced inflammation suppresses Tbr2+ intermediate progenitor cell proliferation in the developing hippocampus accompanied by long-term behavioral deficits. Brain, Behavior, & Immunity - Health, 2020, 7, 100106.	1.3	10
30	A unique cerebellar pattern of microglia activation in a mouse model of encephalopathy of prematurity. Glia, 2022, 70, 1699-1719.	2.5	7
31	Targeting Microglial Disturbances to Protect the Brain From Neurodevelopmental Disorders Associated With Prematurity. Journal of Neuropathology and Experimental Neurology, 2021, 80, 634-648.	0.9	3
32	The Impact of Mouse Preterm Birth Induction by RU-486 on Microglial Activation and Subsequent Hypomyelination. International Journal of Molecular Sciences, 2022, 23, 4867.	1.8	3
33	RÃ1e du récepteur 5-HT2A de la sérotonine dans la douleur neuropathique périphérique. Douleurs, 2009, 10, 127-135.	0.0	0
34	Inflammation et lésions cérébrales du prématuré. , 2017, , 535-541.		0