Xinping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/883885/publications.pdf Version: 2024-02-01

XINDING CHEN

#	Article	IF	CITATIONS
1	Closing yield gaps in China by empowering smallholder farmers. Nature, 2016, 537, 671-674.	27.8	417
2	Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 2013, 143, 91-97.	5.1	237
3	Enhancedâ€efficiency fertilizers are not a panacea for resolving the nitrogen problem. Global Change Biology, 2018, 24, e511-e521.	9.5	200
4	Yield and Nitrogen Balance of Greenhouse Tomato (Lycopersicum esculentum Mill.) with Conventional and Site-specific Nitrogen Management in Northern China. Nutrient Cycling in Agroecosystems, 2007, 77, 1-14.	2.2	127
5	In-Season Root-Zone N Management for Mitigating Greenhouse Gas Emission and Reactive N Losses in Intensive Wheat Production. Environmental Science & Technology, 2013, 47, 6015-6022.	10.0	119
6	Active canopy sensor-based precision N management strategy for rice. Agronomy for Sustainable Development, 2012, 32, 925-933.	5.3	106
7	Agronomic Approach of Zinc Biofortification Can Increase Zinc Bioavailability in Wheat Flour and thereby Reduce Zinc Deficiency in Humans. Nutrients, 2017, 9, 465.	4.1	60
8	Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system. Soil and Tillage Research, 2019, 191, 185-196.	5.6	54
9	Developing a new Crop Circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain. Precision Agriculture, 2017, 18, 2-18.	6.0	53
10	Overuse of Phosphorus Fertilizer Reduces the Grain and Flour Protein Contents and Zinc Bioavailability of Winter Wheat (<i>Triticum aestivum</i> L.). Journal of Agricultural and Food Chemistry, 2017, 65, 1473-1482.	5.2	52
11	A steady-state N balance approach for sustainable smallholder farming. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	49
12	Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production on the Loess Plateau of China. Biosystems Engineering, 2018, 167, 75-86.	4.3	44
13	Environmental costs and mitigation potential in plastic-greenhouse pepper production system in China: A life cycle assessment. Agricultural Systems, 2018, 167, 186-194.	6.1	38
14	Investigation of Leaf Diseases and Estimation of Chlorophyll Concentration in Seven Barley Varieties Using Fluorescence and Hyperspectral Indices. Remote Sensing, 2014, 6, 64-86.	4.0	37
15	Longâ€ŧerm optimization of crop yield while concurrently improving soil quality. Land Degradation and Development, 2019, 30, 897-909.	3.9	30
16	A high plant density reduces the ability of maize to use soil nitrogen. PLoS ONE, 2017, 12, e0172717.	2.5	28
17	Environmental, human health, and ecosystem economic performance of long-term optimizing nitrogen management for wheat production. Journal of Cleaner Production, 2021, 311, 127620.	9.3	22
18	Improving soil quality for higher grain yields in Chinese wheat and maize production. Land Degradation and Development, 2020, 31, 1125-1137.	3.9	21

XINPING CHEN

#	Article	IF	CITATIONS
19	Environmental mitigation potential by improved nutrient managements in pear (Pyrus pyrifolia L.) orchards based on life cycle assessment: A case study in the North China Plain. Journal of Cleaner Production, 2020, 262, 121273.	9.3	21
20	Cutting carbon footprints of vegetable production with integrated soil - crop system management: A case study of greenhouse pepper production. Journal of Cleaner Production, 2020, 254, 120158.	9.3	21
21	Aggregate-associated changes in nutrient properties, microbial community and functions in a greenhouse vegetable field based on an eight-year fertilization experiment of China. Journal of Integrative Agriculture, 2020, 19, 2530-2548.	3.5	17
22	Strengthening Agronomy Research for Food Security and Environmental Quality. Environmental Science & Contended Science & Conte	10.0	13
23	Integrated systematic approach increase greenhouse tomato yield and reduce environmental losses. Journal of Environmental Management, 2020, 266, 110569.	7.8	11
24	The nitrogen and carbon footprints of vegetable production in the subtropical high elevation mountain region. Ecological Indicators, 2021, 122, 107298.	6.3	10
25	Life cycle assessment of a long-term multifunctional winter wheat-summer maize rotation system on the North China Plain under sustainable P management. Science of the Total Environment, 2021, 783, 147039.	8.0	7
26	Environmental impacts, human health, and energy consumption of nitrogen management for maize production in subtropical region. Environmental Science and Pollution Research, 2022, 29, 75636-75650.	5.3	2

3