Youngoo Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8838684/publications.pdf

Version: 2024-02-01

164 papers 2,431 citations

249298 26 h-index 312153 41 g-index

164 all docs

164 docs citations

times ranked

164

1682 citing authors

#	Article	IF	CITATIONS
1	A 5.8 GHz RF Receiver Front-End with 77.6 dB Dynamic Range AGC for a DSRC Transceiver. IEEE Access, 2022, , 1-1.	2.6	1
2	Doherty Power Amplifier With Extended High-Efficiency Range Based on the Utilization of Multiple Output Power Back-Off Parameters. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 2258-2270.	2.9	9
3	Low-Profile and Wideband Circularly Polarized Magneto-Electric Dipole Antenna Excited by a Cross Slot. IEEE Access, 2022, 10, 52154-52161.	2.6	8
4	A High-Efficiency Triple-Mode Active Rectifier With Gate Charge Recycling Technique for Wireless Power Transfer System. IEEE Access, 2022, 10, 45943-45953.	2.6	2
5	A Wideband Multilevel Reconfigurable Class E/F ₂₃ Power Amplifier With a Band-Selecting Tracking Reactance Compensation Automatic Calibration Algorithm. IEEE Access, 2022, 10, 54214-54220.	2.6	1
6	A 1.8–2.7 GHz Triple-Band Low Noise Amplifier with 31.5 dB Dynamic Range of Power Gain and Adaptive Power Consumption for LTE Application. Sensors, 2022, 22, 4039.	2.1	4
7	Compact Load Network Having a Controlled Electrical Length for Doherty Power Amplifier. IEEE Access, 2022, 10, 70440-70446.	2.6	4
8	Retroreflective Transceiver Array Using a Novel Calibration Method Based on Optimum Phase Searching. IEEE Transactions on Industrial Electronics, 2021, 68, 2510-2520.	5.2	19
9	A 15-W Triple-Mode Wireless Power Transmitting Unit With High System Efficiency Using Integrated Power Amplifier and DC–DC Converter. IEEE Transactions on Industrial Electronics, 2021, 68, 9574-9585.	5.2	7
10	A 15-W Quadruple-Mode Reconfigurable Bidirectional Wireless Power Transceiver With 95% System Efficiency for Wireless Charging Applications. IEEE Transactions on Power Electronics, 2021, 36, 3814-3827.	5.4	9
11	500 W Three-way GaN Doherty Power Amplifier for Sub-6 GHz 5G New Radio Base Transceiver Systems., 2021,,.		6
12	Analysis of Received Power in RF Wireless Power Transfer System With Array Antennas. IEEE Access, 2021, 9, 76315-76324.	2.6	11
13	Mid-Range Wireless Power Transfer System for Various Types of Multiple Receivers Using Power Customized Resonator. IEEE Access, 2021, 9, 45230-45241.	2.6	10
14	Correction to "5.8 GHz 4-Channel Beamforming Tx IC for Microwave Power Transfer― IEEE Access, 2021, 9, 83551-83551.	2.6	0
15	Extendable Array Rectenna for a Microwave Wireless Power Transfer System. IEEE Access, 2021, 9, 98348-98360.	2.6	4
16	The Demonstration of S2P (Serial-to-Parallel) Converter with Address Allocation Method Using 28 nm CMOS Technology. Applied Sciences (Switzerland), 2021, 11, 429.	1.3	1
17	5.8 GHz 4-Channel Beamforming Tx IC for Microwave Power Transfer. IEEE Access, 2021, 9, 72316-72325.	2.6	6
18	Circularly Polarized Dielectric Resonator Antenna With Two Annular Vias. IEEE Access, 2021, 9, 41123-41128.	2.6	13

#	Article	IF	CITATIONS
19	A Design of 44.1 fJ/Conv-Step 12-Bit 80 ms/s Time Interleaved Hybrid Type SAR ADC With Redundancy Capacitor and On-Chip Time-Skew Calibration. IEEE Access, 2021, 9, 133143-133155.	2.6	6
20	Bandwidth-Enhanced Low-Profile Magneto-Electric Dipole Antenna With Shorting Parasitic Elements. IEEE Access, 2021, 9, 64852-64859.	2.6	5
21	2.4 GHz GaN HEMT Class-F Synchronous Rectifier Using an Independent Second Harmonic Tuning Circuit. Sensors, 2021, 21, 1608.	2.1	2
22	Optimized Broadband Load Network for Doherty Power Amplifier Based on Bandwidth Balancing. IEEE Microwave and Wireless Components Letters, 2021, 31, 280-283.	2.0	5
23	A Low-Power 12-Bit 20 MS/s Asynchronously Controlled SAR ADC for WAVE ITS Sensor Based Applications. Sensors, 2021, 21, 2260.	2.1	8
24	Doherty Power Amplifier Based on Asymmetric Cells With Complex Combining Load. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 2336-2344.	2.9	14
25	High-Efficiency Multilevel Multimode Dynamic Supply Switching Modulator for LTE Power Amplifier. IEEE Transactions on Power Electronics, 2021, 36, 6967-6977.	5.4	8
26	Dual-Band RF Wireless Power Transfer System with a Shared-Aperture Dual-Band Tx Array Antenna. Energies, 2021, 14, 3803.	1.6	5
27	Optimized Symmetric Two-Stage Doherty Amplifier Design for High Efficiency at Large Power Back-Off. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2021, 32, 635-643.	0.0	1
28	Wideband Linear Power Amplifier of 1.9 GHz~2.6 GHz Using Mutually Coupled Differential Inductor Based on GaAs HBT Process. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2021, 32, 603-609.	0.0	0
29	A broadband circularly polarized magneto-electric dipole array antenna for 5G millimeter-wave applications. Applied Physics Letters, 2021, 119, .	1.5	4
30	A High-Efficiency Fast Transient COT Control DC–DC Buck Converter With Current Reused Current Sensor. IEEE Transactions on Power Electronics, 2021, 36, 9521-9535.	5.4	17
31	3.5 GHz High-Efficiency Asymmetric Doherty Power Amplifier Design Using a Complex Combining Load. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2021, 32, 708-716.	0.0	3
32	A 2.4 GHz Power Receiver Embedded With a Low-Power Transmitter and PCE of 53.8%, for Wireless Charging of IoT/Wearable Devices. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 4315-4325.	2.9	6
33	A High-Efficient Wireless Power Receiver for Hybrid Energy-Harvesting Sources. IEEE Transactions on Power Electronics, 2021, 36, 11148-11162.	5.4	19
34	Dual-Mode Supply Modulator IC With an Adaptive Quiescent Current Controller for Its Linear Amplifier in LTE Mobile Power Amplifier. IEEE Access, 2021, 9, 147768-147779.	2.6	4
35	Hybrid ET Supply Modulator IC with an Adaptive Quiescent Current Controller for Its Linear Amplifier. , 2021, , .		2
36	An Ultra-Low-Power 2.4 GHz All-Digital Phase-Locked Loop With Injection-Locked Frequency Multiplier and Continuous Frequency Tracking. IEEE Access, 2021, 9, 152984-152992.	2.6	2

3

#	Article	IF	CITATIONS
37	3.3 GHz Doherty Power Amplifier having a High-Efficiency at 9 dB Back-Off Based on Outphasing Load Networks. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2021, 32, 971-979.	0.0	2
38	6.78 MHz Wireless Power Transmitter Based on a Reconfigurable Class–E Power Amplifier for Multiple Device Charging. IEEE Transactions on Power Electronics, 2020, 35, 5907-5917.	5.4	22
39	A Design of Low-Power 10-bit 1-MS/s Asynchronous SAR ADC for DSRC Application. Electronics (Switzerland), 2020, 9, 1100.	1.8	14
40	A 2.45 GHz High Efficiency CMOS RF Energy Harvester with Adaptive Path Control. Electronics (Switzerland), 2020, 9, 1107.	1.8	9
41	A High Performance Adaptive Digital LDO Regulator With Dithering and Dynamic Frequency Scaling for IoT Applications. IEEE Access, 2020, 8, 132200-132211.	2.6	8
42	LUT-Based Focal Beamforming System Using 2-D Adaptive Sequential Searching Algorithm for Microwave Power Transfer. IEEE Access, 2020, 8, 196024-196033.	2.6	11
43	Cavity-Backed Patch Filtenna for Harmonic Suppression. IEEE Access, 2020, 8, 221580-221589.	2.6	10
44	Frequency Selective Degeneration for 6–18 GHz GaAs pHEMT Broadband Power Amplifier Integrated Circuit. Electronics (Switzerland), 2020, 9, 1588.	1.8	3
45	An Efficient Reconfigurable RF-DC Converter With Wide Input Power Range for RF Energy Harvesting. IEEE Access, 2020, 8, 79310-79318.	2.6	41
46	Dual-Band Circularly Polarized Annular Slot Antenna With a Lumped Inductor for GPS Application. IEEE Transactions on Antennas and Propagation, 2020, 68, 8197-8202.	3.1	16
47	A Design of 8 fJ/Conversion-Step 10-bit 8MS/s Low Power Asynchronous SAR ADC for IEEE 802.15.1 IoT Sensor Based Applications. IEEE Access, 2020, 8, 85869-85879.	2.6	20
48	A Low-Power Multichannel Time-to-Digital Converter Using All-Digital Nested Delay-Locked Loops With 50-ps Resolution and High Throughput for LiDAR Sensors. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 9262-9271.	2,4	29
49	Design of a Low Power 10-b 8-MS/s Asynchronous SAR ADC with On-Chip Reference Voltage Generator. Electronics (Switzerland), 2020, 9, 872.	1.8	13
50	Single-Fed Circularly Polarized Dielectric Resonator Antenna With an Enhanced Axial Ratio Bandwidth and Enhanced Gain. IEEE Access, 2020, 8, 41045-41052.	2.6	18
51	A High-Efficiency and Wide-Input Range RF Energy Harvester Using Multiple Rectenna and Adaptive Matching. Energies, 2020, 13, 1023.	1.6	4
52	Reconfigurable Dual-/Triple-Band Circularly Polarized Dielectric Resonator Antenna. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 443-447.	2,4	15
53	Scaled GaN-HEMT Large-Signal Model Based on EM Simulation. Electronics (Switzerland), 2020, 9, 632.	1.8	2
54	An Ultra-Low Power, Adaptive All-Digital Frequency-Locked Loop With Gain Estimation and Constant Current DCO. IEEE Access, 2020, 8, 97215-97230.	2.6	4

#	Article	IF	CITATIONS
55	Wideband Asymmetric 0.6"½2±1.0 GHz Doherty Power Amplifier with Parallel Resonance Circuit for Peaking Amplifier. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2020, 31, 319-327.	0.0	o
56	Four-Level Dynamic Supply Switching Modulator Using Two Single-Inductor Dual-Output DC-DC Converters for LTE Power Amplifier. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2020, 31, 1069-1076.	0.0	0
57	A Simple Phase Adaptation Algorithm for Compact Microwave Power Transmitter Array. , 2020, , .		2
58	5.8 GHz High-Efficiency RF–DC Converter Based on Common-Ground Multiple-Stack Structure. Sensors, 2019, 19, 3257.	2.1	13
59	Design of a 900 MHz Dual-Mode SWIPT for Low-Power IoT Devices. Sensors, 2019, 19, 4676.	2.1	11
60	A design of a 5.6ÂGHz frequency synthesizer with switched bias LIT VCO and low noise onâ€chip LDO regulator for 5G applications. International Journal of Circuit Theory and Applications, 2019, 47, 1856-1868.	1.3	4
61	InGaP/GaAs HBT Broadband Power Amplifier IC with 54.3% Fractional Bandwidth Based on Cascode Structure. , 2019, , .		5
62	A Fully Integrated Bluetooth Low-Energy Transceiver with Integrated Single Pole Double Throw and Power Management Unit for IoT Sensors. Sensors, 2019, 19, 2420.	2.1	10
63	6–18 GHz GaAs pHEMT Broadband Power Amplifier Based on Dual-Frequency Selective Impedance Matching Technique. IEEE Access, 2019, 7, 66275-66280.	2.6	22
64	Bandwidth-Enhanced Circularly Polarized Crescent-Shaped Slot Antenna via Circular-Patch Loading. Applied Sciences (Switzerland), 2019, 9, 1117.	1.3	4
65	A CMOS RF Energy Harvester With 47% Peak Efficiency Using Internal Threshold Voltage Compensation. IEEE Microwave and Wireless Components Letters, 2019, 29, 415-417.	2.0	28
66	High-Gain Waveguide-Fed Circularly Polarized Spidron Fractal Aperture Antenna. Applied Sciences (Switzerland), 2019, 9, 691.	1.3	5
67	A Sidelobe-Reduced, Four-Beam Array Antenna Fed by a Modified \$4imes4\$ Butler Matrix for 5G Applications. IEEE Transactions on Antennas and Propagation, 2019, 67, 4528-4536.	3.1	48
68	DSS modulator using the SIDO dcâ^'dc converter for the CMOS RF PA integrated circuit. IET Microwaves, Antennas and Propagation, 2019, 13, 597-601.	0.7	2
69	Broadband InGaP/GaAs HBT Power Amplifier Integrated Circuit Using Cascode Structure and Optimized Shunt Inductor. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 5090-5100.	2.9	20
70	High-Efficiency Stacked Power Amplifier IC With 23% Fractional Bandwidth for Average Power Tracking Application. IEEE Access, 2019, 7, 176658-176667.	2.6	6
71	Octave Bandwidth Doherty Power Amplifier Using Multiple Resonance Circuit for the Peaking Amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 583-593.	3.5	66
72	A -20 to 30 dBm Input Power Range Wireless Power System With a MPPT-Based Reconfigurable 48% Efficient RF Energy Harvester and 82% Efficient A4WP Wireless Power Receiver With Open-Loop Delay Compensation. IEEE Transactions on Power Electronics, 2019, 34, 6803-6817.	5.4	34

#	Article	IF	CITATIONS
73	Striving for Efficiency: A 475-kHz High-Efficiency Two-Stage Class-E Power Amplifier. IEEE Microwave Magazine, 2019, 20, 85-90.	0.7	2
74	High-Efficiency CMOS Power Amplifier using Low-Loss PCB Balun with Second Harmonic Impedance Matching. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2019, 30, 104-110.	0.0	1
7 5	A 3.9 mW Bluetooth Low-Energy Transmitter Using All-Digital PLL-Based Direct FSK Modulation in 55 nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 3037-3048.	3.5	17
76	Xâ€band twoâ€stage Doherty power amplifier based on preâ€matched GaNâ€HEMTs. IET Microwaves, Antennas and Propagation, 2018, 12, 179-184.	0.7	10
77	260- <inline-formula> <tex-math notation="LaTeX">\$mu\$ </tex-math> </inline-formula> < Constant Current Over PVT Variations Using FLL and Adjustable LDO. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 739-743.	2.2	8
78	A Highly Linear, AEC-Q100 Compliant Signal Conditioning IC for Automotive Piezo-Resistive Pressure Sensors. IEEE Transactions on Industrial Electronics, 2018, 65, 7363-7373.	5.2	6
79	2.65 GHz 340 W dual internally matched FETs for compact doherty power amplifiers. , 2018, , .		1
80	A Design of Fast-Settling, Low-Power 4.19-MHz Real-Time Clock Generator With Temperature Compensation and 15-dB Noise Reduction. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 1151-1158.	2.1	9
81	A Triple-Mode Wireless Power-Receiving Unit With 85.5% System Efficiency for A4WP, WPC, and PMA Applications. IEEE Transactions on Power Electronics, 2018, 33, 3141-3156.	5.4	25
82	Design of a High Efficiency DC–DC Buck Converter With Two-Step Digital PWM and Low Power Self-Tracking Zero Current Detector for IoT Applications. IEEE Transactions on Power Electronics, 2018, 33, 1428-1439.	5.4	51
83	A 6â€bit 4ÂMS/s 26fJ/conversionâ€step segmented SAR ADC with reduced switching energy for BLE. International Journal of Circuit Theory and Applications, 2018, 46, 375-383.	1.3	7
84	An Antenna Proximity Sensor for Mobile Terminals Using Reflection Coefficient. Sensors, 2018, 18, 2103.	2.1	4
85	Dual-Mode CMOS Power Amplifier Based on Load-Impedance Modulation. IEEE Microwave and Wireless Components Letters, 2018, 28, 1041-1043.	2.0	10
86	A 10- and 12-Bit Multi-Channel Hybrid Type Successive Approximation Register Analog-to-Digital Converter for Wireless Power Transfer System. Energies, 2018, 11, 2673.	1.6	5
87	GaNâ€HEMT asymmetric threeâ€way Doherty power amplifier using GPD. IET Microwaves, Antennas and Propagation, 2018, 12, 2115-2121.	0.7	7
88	A Design of Small Area, 0.95 mW, 612–1152 MHz Open Loop Injection-Locked Frequency Multiplier for IoT Sensor Applications. Sensors, 2018, 18, 1777.	2.1	3
89	Improvement of RF Wireless Power Transmission Using a Circularly Polarized Retrodirective Antenna Array with EBG Structures. Applied Sciences (Switzerland), 2018, 8, 324.	1.3	10
90	Design of Peak Efficiency of 85.3% WPC/PMA Wireless Power Receiver Using Synchronous Active Rectifier and Multi Feedback Low-Dropout Regulator. Energies, 2018, 11, 479.	1.6	4

#	Article	IF	CITATIONS
91	Single Inductor-Multiple Output DPWM DC-DC Boost Converter with a High Efficiency and Small Area. Energies, 2018, 11, 725.	1.6	5
92	A Design of Ambient RF Energy Harvester with Sensitivity of â^21 dBm and Power Efficiency of a 39.3% Using Internal Threshold Voltage Compensation. Energies, 2018, 11, 1258.	1.6	14
93	A Wide Input Range Buck-Boost DC–DC Converter Using Hysteresis Triple-Mode Control Technique with Peak Efficiency of 94.8% for RF Energy Harvesting Applications. Energies, 2018, 11, 1618.	1.6	9
94	Design of a Low-Power, Small-Area AEC-Q100-Compliant SENT Transmitter in Signal Conditioning IC for Automotive Pressure and Temperature Complex Sensors in 180 Nm CMOS Technology. Sensors, 2018, 18, 1555.	2.1	8
95	Broadband Circularly Polarized Slot Antenna Loaded by a Multiple-Circular-Sector Patch. Sensors, 2018, 18, 1576.	2.1	12
96	A High Noise Immunity, 28 \tilde{A} — 16-Channel Finger Touch Sensing IC Using OFDM and Frequency Translation Technique. Sensors, 2018, 18, 1652.	2.1	3
97	A 3-D Meandered Probe-Fed Dual-Band Circularly Polarized Dielectric Resonator Antenna. Sensors, 2018, 18, 2421.	2.1	3
98	Compact Load Network for GaN-HEMT Doherty Power Amplifier IC Using Left-Handed and Right-Handed Transmission Lines. IEEE Microwave and Wireless Components Letters, 2017, 27, 293-295.	2.0	15
99	Doherty Power Amplifier Based on the Fundamental Current Ratio for Asymmetric cells. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 4190-4197.	2.9	44
100	High-efficiency rectifier (5.2 GHz) using a Class-FDickson charge pump. Microwave and Optical Technology Letters, 2017, 59, 3018-3023.	0.9	8
101	A 10-bit 1ÂMS/s segmented Dual-Sampling SAR ADC with reduced switching energy. Microelectronics Journal, 2017, 70, 89-96.	1.1	10
102	VHF/UHF broadband fourâ€way power combiner/divider using 0° hybrid and impedance transformer based on transmission lines. IET Microwaves, Antennas and Propagation, 2017, 11, 1748-1753.	0.7	5
103	Optimized Current of the Peaking Amplifier for Two-Stage Doherty Power Amplifier. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 209-217.	2.9	22
104	A Design of a 92.4% Efficiency Triple Mode Control DC–DC Buck Converter With Low Power Retention Mode and Adaptive Zero Current Detector for IoT/Wearable Applications. IEEE Transactions on Power Electronics, 2017, 32, 6946-6960.	5.4	65
105	Symmetric Three-Way Doherty Power Amplifier for High Efficiency and Linearity. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64, 862-866.	2.2	41
106	Highly Efficient Fully Integrated GaN-HEMT Doherty Power Amplifier Based on Compact Load Network. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 5203-5211.	2.9	32
107	Vertical-Strip-Fed Broadband Circularly Polarized Dielectric Resonator Antenna. Sensors, 2017, 17, 1911.	2.1	9
108	Digitally Controlled Single-inductor Multiple-output Synchronous DC-DC Boost Converter with Smooth Loop Handover Using 55 nm Process. Journal of Power Electronics, 2017, 17, 821-834.	0.9	1

#	Article	IF	Citations
109	A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna. Sensors, 2016, 16, 1349.	2.1	26
110	A Wideband Circularly Polarized Antenna with a Multiple-Circular-Sector Dielectric Resonator. Sensors, 2016, 16, 1849.	2.1	7
111	A design of power managements IC with peak efficiency of 92.8Â% step-up converter and peak efficiency of 93.8Â% step-down converter for power transmitting unit of A4WP applications in 0.18 μ m BCD. Analog Integrated Circuits and Signal Processing, 2016, 88, 115-125.	0.9	2
112	2.6 GHz 4 watt GaN-HEMT two-stage power amplifier MMIC for LTE small-cell applications. , 2016, , .		5
113	A design of wide input range triple-mode active rectifier with peak efficiency of 94.2Â% and maximum output power of 8ÂW for wireless power receiver in 0.18µM BCD. Analog Integrated Circuits and Signal Processing, 2016, 86, 255-265.	0.9	5
114	CMOS Power Amplifier Integrated Circuit With Dual-Mode Supply Modulator for Mobile Terminals. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 157-167.	3.5	43
115	A low phase noise 30-GHz frequency synthesizer with linear transconductance VCO and dual-injection-locked frequency divider. Analog Integrated Circuits and Signal Processing, 2016, 86, 365-376.	0.9	4
116	A Design of a Wireless Power Receiving Unit With a High-Efficiency 6.78-MHz Active Rectifier Using Shared DLLs for Magnetic-Resonant A4 WP Applications. IEEE Transactions on Power Electronics, 2016, 31, 4484-4498.	5.4	64
117	Design of a 2.6 GHz GaN-HEMT Doherty Power Amplifier IC for Small-Cell Base Station Systems. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2016, 27, 108-114.	0.0	0
118	A 2.65 GHz Doherty Power Amplifier Using Internally-Matched GaN-HEMT. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2016, 27, 269-276.	0.0	0
119	Efficiency enhanced <scp>CMOS</scp> digitally controlled dynamic bias switching power amplifier for <scp>LTE</scp> . Microwave and Optical Technology Letters, 2015, 57, 2315-2321.	0.9	4
120	CMOS dynamic supply switching power amplifier for LTE applications. , 2015, , .		3
121	A Wide-Locking-Range Dual Injection-Locked Frequency Divider With an Automatic Frequency Calibration Loop in 65-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62, 327-331.	2.2	22
122	Dual-mode supply modulator for CMOS envelope tracking power amplifier integrated circuit. Microwave and Optical Technology Letters, 2015, 57, 1338-1343.	0.9	5
123	Circularly Polarized Semi-Eccentric Annular Dielectric Resonator Antenna for X-Band Applications. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1810-1813.	2.4	45
124	Circularly Polarized Spidron Fractal Dielectric Resonator Antenna. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1806-1809.	2.4	65
125	Broadband Doherty Power Amplifier Based on Asymmetric Load Matching Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62, 533-537.	2.2	45
126	High-Efficiency GaN-HEMT Doherty Power Amplifier with Compact Harmonic Control Networks. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2015, 26, 783-789.	0.0	0

#	Article	IF	Citations
127	A CMOS envelope tracking power amplifier for 4G LTE mobile terminal applications. , 2014, , .		4
128	A CMOS Envelope Tracking Power Amplifier for LTE Mobile Applications. Journal of Semiconductor Technology and Science, 2014, 14, 235-245.	0.1	11
129	Integrated CMOS RF transmitter with a singleâ€ended power amplifier. Microwave and Optical Technology Letters, 2013, 55, 205-210.	0.9	3
130	Threeâ€stage doherty amplifier with uneven input splitter. Microwave and Optical Technology Letters, 2013, 55, 1405-1409.	0.9	9
131	Doherty power amplifier using a compact load network for bandwidth extension. , 2013, , .		2
132	Miniaturized branch-line hybrid coupler with broadband impedance matching network. Journal of Electromagnetic Waves and Applications, 2013, 27, 1230-1237.	1.0	0
133	Baseband Noise Reduction Method Using Captured TX Signal for UHF RFID Reader Applications. IEEE Transactions on Industrial Electronics, 2012, 59, 592-598.	5.2	12
134	CMOS passive wake-up circuit for sensor network applications. Microwave and Optical Technology Letters, 2010, 52, 597-600.	0.9	16
135	Linearization of a 3.7 GHz multiâ€carrier GaN HEMT Doherty power amplifier using digital predistortion method. Microwave and Optical Technology Letters, 2010, 52, 634-638.	0.9	0
136	A Highly Linear Two-Stage Amplifier Integrated Circuit Using InGaP/GaAs HBT. IEEE Journal of Solid-State Circuits, 2010, 45, 2038-2043.	3.5	33
137	1.9GHz band highly linear 2-stage power amplifier MMIC based on InGaP/GaAs HBT., 2009,,.		3
138	Analysis and design of compact thirdâ€order intermodulation generation circuits. Microwave and Optical Technology Letters, 2009, 51, 2137-2140.	0.9	4
139	A load network for Doherty amplifiers using an optimized impedance transformer. Microwave and Optical Technology Letters, 2009, 51, 2502-2504.	0.9	2
140	Design of a 100watt high-efficiency power amplifier for the 10-500MHz band., 2009,,.		8
141	Optimum ASK Modulation Scheme for Passive RFID Tags Under Antenna Mismatch Conditions. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 2337-2343.	2.9	15
142	Inverted-load network for high-power Doherty amplifier. IEEE Microwave Magazine, 2009, 10, 93-98.	0.7	15
143	A high-power Cartesian feedback transmitter including a compact inverted Doherty amplifier. Microwave and Optical Technology Letters, 2008, 50, 944-946.	0.9	0
144	An optimized Doherty power amplifier using an unequal quadrature input splitter. Microwave and Optical Technology Letters, 2008, 50, 1536-1539.	0.9	7

#	Article	IF	Citations
145	A 3.7GHz GaN HEMT Doherty power amplifier using digital predistortion linearization. , 2008, , .		O
146	A 30 W Cartesian Feedback Transmitter with 40 % Efficiency Incorporating an Inverted Doherty Amplifier. , 2007, , .		2
147	Design of a High-Efficiency and High-Power Inverted Doherty Amplifier. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 1105-1111.	2.9	50
148	A high-frequency and high-power quasi-class-E amplifier design using a finite bias feed inductor. Microwave and Optical Technology Letters, 2007, 49, 1114-1118.	0.9	5
149	A New Envelope Predistorter With Envelope Delay Taps for Memory Effect Compensation. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 52-59.	2.9	29
150	A New Compact Load Network for Doherty Amplifiers Using an Imperfect Quarter-Wave Line. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 2313-2319.	2.9	25
151	High-Efficiency Class-F Amplifier Design In the Presence of Internal Parasitic Components of Transistors., 2006,,.		10
152	A Highly Linear and Efficient Differential CMOS Power Amplifier With Harmonic Control. IEEE Journal of Solid-State Circuits, 2006, 41, 1314-1322.	3.5	91
153	Experimental optimization of the 2nd loop configuration for feedforward amplifiers in terms of their efficiency and linearity. Microwave and Optical Technology Letters, 2006, 48, 617-621.	0.9	3
154	Power amplifier with low average current and compact output matching network. IEEE Microwave and Wireless Components Letters, 2005, 15, 763-765.	2.0	7
155	DC Boosting Effect of Active Bias Circuits and Its Optimization for Class-AB InGaP–GaAs HBT Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2004, 52, 1455-1463.	2.9	40
156	A fully matched N-way doherty amplifier with optimized linearity. IEEE Transactions on Microwave Theory and Techniques, 2003, 51, 986-993.	2.9	193
157	A microwave Doherty amplifier employing envelope tracking technique for high efficiency and linearity. IEEE Microwave and Wireless Components Letters, 2003, 13, 370-372.	2.0	72
158	Optimization for error-canceling loop of the feedforward amplifier using a new system-level mathematical model. IEEE Transactions on Microwave Theory and Techniques, 2003, 51, 475-482.	2.9	18
159	New predistortion linearizer using low-frequency even-order intermodulation components. IEEE Transactions on Microwave Theory and Techniques, 2002, 50, 446-452.	2.9	31
160	Measurement of two-tone transfer characteristics of high-power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2001, 49, 568-571.	2.9	49
161	The effects of C/sub bc/ on the linearity of AlGaAs/GaAs power HBTs. IEEE Transactions on Microwave Theory and Techniques, 2001, 49, 1270-1276.	2.9	23
162	A new empirical large-signal model of Si LDMOSFETs for high-power amplifier design. IEEE Transactions on Microwave Theory and Techniques, 2001, 49, 1626-1633.	2.9	42

#	Article	IF	CITATIONS
163	Digital controlled adaptive feedforward amplifier for IMT-2000 band. , 0, , .		16
164	High efficiency CDMA power amplifier with dynamic current control circuits. , 0, , .		3