
Alec N Salt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8838612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved Speech Intelligibility in Subjects With Stable Sensorineural Hearing Loss Following Intratympanic Dosing of FX-322 in a Phase 1b Study. Otology and Neurotology, 2021, 42, e849-e857.	1.3	34
2	Inner ear drug delivery through a cochlear implant: Pharmacokinetics in a Macaque experimental model. Hearing Research, 2021, 404, 108228.	2.0	18
3	Reducing Auditory Nerve Excitability by Acute Antagonism of Ca2+-Permeable AMPA Receptors. Frontiers in Synaptic Neuroscience, 2021, 13, 680621.	2.5	5
4	CACHD1-deficient mice exhibit hearing and balance deficits associated with a disruption of calcium homeostasis in the inner ear. Hearing Research, 2021, 409, 108327.	2.0	3
5	Steroid Nomenclature in Inner Ear Therapy. Otology and Neurotology, 2020, 41, 722-726.	1.3	16
6	Permeation Enhancers for Intratympanically-applied Drugs Studied Using Fluorescent Dexamethasone as a Marker. Otology and Neurotology, 2018, 39, 639-647.	1.3	23
7	Communication pathways to and from the inner ear and their contributions to drug delivery. Hearing Research, 2018, 362, 25-37.	2.0	124
8	Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications. Hearing Research, 2018, 368, 28-40.	2.0	121
9	Dexamethasone and Dexamethasone Phosphate Entry into Perilymph Compared for Middle Ear Applications in Guinea Pigs. Audiology and Neuro-Otology, 2018, 23, 245-257.	1.3	21
10	Local drug delivery to the inner ear: Principles, practice, and future challenges. Hearing Research, 2018, 368, 1-2.	2.0	34
11	Hearing Changes After Intratympanic Steroids for Secondary (Salvage) Therapy of Sudden Hearing Loss: A Meta-Analysis Using Mathematical Simulations of Drug Delivery Protocols. Otology and Neurotology, 2018, 39, 803-815.	1.3	16
12	Hearing Changes After Intratympanically Applied Steroids for Primary Therapy of Sudden Hearing Loss: A Meta-analysis Using Mathematical Simulations of Drug Delivery Protocols. Otology and Neurotology, 2017, 38, 19-30.	1.3	41
13	Perilymph pharmacokinetics of marker applied through a cochlear implant in guinea pigs. PLoS ONE, 2017, 12, e0183374.	2.5	24
14	Intracochlear Drug Injections through the Round Window Membrane: Measures to Improve Drug Retention. Audiology and Neuro-Otology, 2016, 21, 72-79.	1.3	54
15	Drug Diffusion to the Apex of the Human Cochlea? A Comment on "Kang WS, Nguyen K, McKenna CE, Sewell WF, McKenna MJ, Jung DH. Intracochlear Drug Delivery Through the Oval Window in Fresh Cadaveric Human Temporal Bones― Otology and Neurotology, 2016, 37, 1462-1463.	1.3	1
16	The auditory nerve overlapped waveform (ANOW): A new objective measure of low-frequency hearing. AIP Conference Proceedings, 2015, , .	0.4	2
17	Controlled Release Dexamethasone Implants in the Round Window Niche for Salvage Treatment of Idiopathic Sudden Sensorineural Hearing Loss. Otology and Neurotology, 2014, 35, 1168-1171.	1.3	38
18	Water permeability of the mammalian cochlea: functional features of an aquaporin-facilitated water shunt at the perilymph–endolymph barrier. Pflugers Archiv European Journal of Physiology, 2014, 466, 1963-1985.	2.8	18

#	Article	IF	CITATIONS
19	How Does Wind Turbine Noise Affect People?. Acoustics Today, 2014, 10, 20-28.	1.0	14
20	Systemic Lipopolysaccharide Compromises the Blood-Labyrinth Barrier and Increases Entry of Serum Fluorescein into the Perilymph. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 707-719.	1.8	72
21	Amplitude modulation of audible sounds by non-audible sounds: Understanding the effects of wind turbine noise. Proceedings of Meetings on Acoustics, 2013, , .	0.3	6
22	Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig. Journal of the Acoustical Society of America, 2013, 133, 1561-1571.	1.1	34
23	Gentamicin Concentration Gradients in Scala Tympani Perilymph following Systemic Applications. Audiology and Neuro-Otology, 2013, 18, 383-391.	1.3	20
24	Dexamethasone Levels and Base-to-Apex Concentration Gradients in the Scala Tympani Perilymph After Intracochlear Delivery in the Guinea Pig. Otology and Neurotology, 2012, 33, 660-665.	1.3	53
25	Perilymph Pharmacokinetics of Markers and Dexamethasone Applied and Sampled at the Lateral Semi-Circular Canal. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 771-783.	1.8	61
26	Marker entry into vestibular perilymph via the stapes following applications to the round window niche of guinea pigs. Hearing Research, 2012, 283, 14-23.	2.0	65
27	Progress in cochlear physiology after Békésy. Hearing Research, 2012, 293, 12-20.	2.0	34
28	Infrasound From Wind Turbines Could Affect Humans. Bulletin of Science, Technology and Society, 2011, 31, 296-302.	2.9	35
29	Distribution of Dexamethasone and Preservation of Inner Ear Function following Intratympanic Delivery of a Gel-Based Formulation. Audiology and Neuro-Otology, 2011, 16, 323-335.	1.3	102
30	Guest Editorial: Drug Delivery for Treatment of Inner Ear Disease: Current State of Knowledge. Ear and Hearing, 2010, 31, 155.	2.1	3
31	Endolymphatic Hydrops: Pathophysiology and Experimental Models. Otolaryngologic Clinics of North America, 2010, 43, 971-983.	1.1	132
32	Responses of the ear to low frequency sounds, infrasound and wind turbines. Hearing Research, 2010, 268, 12-21.	2.0	101
33	Estimating the operating point of the cochlear transducer using low-frequency biased distortion products. Journal of the Acoustical Society of America, 2009, 125, 2129-2145.	1.1	24
34	Effect of Artificial Endolymph Injection into the Cochlear Duct on Perilymph Potassium. Orl, 2009, 71, 16-18.	1.1	10
35	Displacements of the organ of Corti by gel injections into the cochlear apex. Hearing Research, 2009, 250, 63-75.	2.0	34
36	Principles of Local Drug Delivery to the Inner Ear. Audiology and Neuro-Otology, 2009, 14, 350-360.	1.3	207

#	Article	IF	CITATIONS
37	Entry of Substances Into Perilymph Through the Bone of the Otic Capsule After Intratympanic Applications in Guinea Pigs. Otology and Neurotology, 2009, 30, 131-138.	1.3	87
38	Dependence of Hearing Changes on the Dose of Intratympanically Applied Gentamicin: A Metaâ€Analysis Using Mathematical Simulations of Clinical Drug Delivery Protocols. Laryngoscope, 2008, 118, 1793-1800.	2.0	54
39	Permeability of the Round Window Membrane Is Influenced by the Composition of Applied Drug Solutions and by Common Surgical Procedures. Otology and Neurotology, 2008, 29, 1020-1026.	1.3	70
40	Dexamethasone Concentration Gradients Along Scala Tympani After Application to the Round Window Membrane. Otology and Neurotology, 2008, 29, 401-406.	1.3	170
41	RAPID CLEARANCE OF METHYLPREDNISOLONE AFTER INTRATYMPANIC APPLICATION IN HUMANS. COMMENT ON: BIRD PA, BEGG EJ, ZHANG M, ET AL. INTRATYMPANIC VERSUS INTRAVENOUS DELIVERY OF METHYLPREDNISOLONE TO COCHLEAR PERILYMPH. OTOL NEUROTOL 2007;28:1124-30. Otology and Neurotology, 2008, 29, 732-733.	1.3	37
42	Cochlear Pharmacokinetics with Local Inner Ear Drug Delivery Using a Three-Dimensional Finite-Element Computer Model. Audiology and Neuro-Otology, 2007, 12, 37-48.	1.3	55
43	The endolymphatic sinus is a possible detector of endolymph volume status. Hearing Research, 2007, 224, 117-118.	2.0	3
44	Effect of infrasound on cochlear damage from exposure to a 4kHz octave band of noise. Hearing Research, 2007, 225, 128-138.	2.0	12
45	Marker retention in the cochlea following injections through the round window membrane. Hearing Research, 2007, 232, 78-86.	2.0	30
46	Concentration Gradient Along the Scala Tympani After Local Application of Gentamicin to the Round Window Membrane. Laryngoscope, 2007, 117, 1191-1198.	2.0	91
47	Cochlear microdialysis for quantification of dexamethasone and fluorescein entry into scala tympani during round window administration. Hearing Research, 2006, 212, 236-244.	2.0	62
48	Demonstration of a Longitudinal Concentration Gradient Along Scala Tympani by Sequential Sampling of Perilymph from the Cochlear Apex. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 182-193.	1.8	80
49	Perilymph sampling from the cochlear apex: A reliable method to obtain higher purity perilymph samples from scala tympani. Journal of Neuroscience Methods, 2006, 153, 121-129.	2.5	79
50	Simulation of Application Strategies for Local Drug Delivery to the Inner Ear. Orl, 2006, 68, 386-392.	1.1	39
51	Local inner-ear drug delivery and pharmacokinetics. Drug Discovery Today, 2005, 10, 1299-1306.	6.4	156
52	Drug delivery to the cochlea after implantation: consideration of the risk factors. Cochlear Implants International, 2005, 6, 12-14.	1.2	9
53	Drug delivery to the cochlea after implantation: consideration of the risk factors. Cochlear Implants International, 2005, 6, 12-14.	1.2	11
54	ATP-Î ³ -S shifts the operating point of outer hair cell transduction towards scala tympani. Hearing Research, 2005, 205, 35-43.	2.0	11

#	Article	IF	CITATIONS
55	Pharmacokinetics of Drug Entry into Cochlear Fluids. Volta Review, 2005, 105, 277-298.	0.5	39
56	The influence of transducer operating point on distortion generation in the cochlea. Journal of the Acoustical Society of America, 2004, 115, 1219-1229.	1.1	58
57	Acute Endolymphatic Hydrops Generated by Exposure of the Ear to Nontraumatic Low-Frequency Tones. JARO - Journal of the Association for Research in Otolaryngology, 2004, 5, 203-14.	1.8	34
58	Responses of the endolymphatic sac to perilymphatic injections and withdrawals: evidence for the presence of a one-way valve. Hearing Research, 2004, 191, 90-100.	2.0	62
59	Contamination of perilymph sampled from the basal cochlear turn with cerebrospinal fluid. Hearing Research, 2003, 182, 24-33.	2.0	82
60	Quantitative interpretation of corticosteroid pharmacokinetics in inner fluids using computer simulations. Hearing Research, 2003, 182, 34-42.	2.0	56
61	Analysis of Gentamicin Kinetics in Fluids of the Inner Ear with Round Window Administration. Otology and Neurotology, 2002, 23, 967-974.	1.3	87
62	Simulation of Methods for Drug Delivery to the Cochlear Fluids. , 2002, 59, 140-148.		40
63	Quantitative anatomy of the guinea pig endolymphatic sac. Hearing Research, 2002, 174, 1-8.	2.0	6
64	Quantification of solute entry into cochlear perilymph through the round window membrane. Hearing Research, 2001, 154, 88-97.	2.0	158
65	Quantitative anatomy of the round window and cochlear aqueduct in guinea pigs. Hearing Research, 2001, 162, 105-112.	2.0	47
66	Regulation of Endolymphatic Fluid Volume. Annals of the New York Academy of Sciences, 2001, 942, 306-312.	3.8	76
67	Ionic and potential changes of the endolymphatic sac induced by endolymph volume changes. Hearing Research, 2000, 149, 46-54.	2.0	27
68	Longitudinal endolymph movements and endocochlear potential changes induced by stimulation at infrasonic frequencies. Journal of the Acoustical Society of America, 1999, 106, 847-856.	1.1	24
69	Cochlear Fluid Space Dimensions for Six Species Derived From Reconstructions of Threeâ€Dimensional Magnetic Resonance Images. Laryngoscope, 1999, 109, 1661-1668.	2.0	214
70	Longitudinal endolymph movements induced by perilymphatic injections. Hearing Research, 1998, 123, 137-147.	2.0	41
71	Longitudinal endolymph flow associated with acute volume increase in the guinea pig cochlea. Hearing Research, 1997, 107, 29-40.	2.0	54
72	Quantitative differences in endolymphatic calcium and endocochlear potential between pigmented and albino guinea pigs. Hearing Research, 1997, 113, 191-197.	2.0	44

#	Article	IF	CITATIONS
73	Fixation-induced shrinkage of Reissner's membrane and its potential influence on the assessment of endolymph volume. Hearing Research, 1997, 114, 62-68.	2.0	31
74	Comparison of Endolymph Cross-Sectional Area Measured Histologically with that Measured in Vivo with an Ionic Volume Marker. Annals of Otology, Rhinology and Laryngology, 1995, 104, 886-894.	1.1	10
75	Endolumph volume changes during osmotic dehydration measured by two marker techniques. Hearing Research, 1995, 90, 12-23.	2.0	26
76	Detection and quantification of endolymphatic hydrops in the guinea pig cochlea by magnetic resonance microscopy. Hearing Research, 1995, 88, 79-86.	2.0	47
77	Time course of endolymph volume increase in experimental hydrops measured in vivo with an ionic volume marker. Hearing Research, 1994, 74, 165-172.	2.0	28
78	Endolymph calcium increases with time after surgical induction of hydrops in guinea-pigs. Hearing Research, 1994, 74, 115-121.	2.0	46
79	Accumulation of Potassium in Scala Vestibuli Perilymph of the Mammalian Cochlea. Annals of Otology, Rhinology and Laryngology, 1993, 102, 64-70.	1.1	22
80	Permeability changes of the blood-labyrinth barrier measured in vivo during experimental treatments. Hearing Research, 1992, 61, 12-18.	2.0	48
81	Radial communication between the perilymphatic scalae of the cochlea. II: Estimation by bolus injection of tracer into the sealed cochlea. Hearing Research, 1991, 56, 37-43.	2.0	57
82	Radial communication between the perilymphatic scalae of the cochlea. I: Estimation by tracer perfusion. Hearing Research, 1991, 56, 29-36.	2.0	52
83	Calibration of ion-selective microelectrodes for use with high levels of interfering ions. Journal of Neuroscience Methods, 1991, 38, 233-237.	2.5	16
84	Cochlear action potential tuning curves recorded with a derived response technique. Journal of the Acoustical Society of America, 1990, 88, 1392-1402.	1.1	8
85	Cochlear Threshold Assessment using Tone-Derived Action Potentials. International Journal of Audiology, 1990, 29, 135-145.	1.7	13
86	Calcium gradients in inner ear endolymph. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 1989, 10, 371-375.	1.3	107
87	Perilymph composition in scala tympani of the cochlea: Influence of cerebrospinal fluid. Hearing Research, 1989, 42, 265-271.	2.0	70
88	Interpretation of endolymph flow results: A Comment On â€~Longitudinal flow of endolymph measured by distribution of tetraethylammonium and choline in scala media'. (Syková, E. et al., (1987) Hear. Res.) Tj E	Т Qzq0 00r	g B4 /Overloc

89	Volume flow rate of perilymph in the guinea-pig cochlea. Hearing Research, 1988, 35, 119-129.	2.0	101
90	New Concepts Regarding the Volume Flow of Endolymph and Perilymph. Advances in Oto-Rhino-Laryngology, 1987, 37, 11-17.	1.6	4

#	Article	IF	CITATIONS
91	Direct measurement of longitudinal endolymph flow rate in the guinea pig cochlea. Hearing Research, 1986, 23, 141-151.	2.0	76
92	Functional importance of sodium and potassium in the guinea pig cochlea studied with amiloride and tetraethylammonium The Japanese Journal of Physiology, 1982, 32, 219-230.	0.9	19
93	Effects of hypothermia on ionic movement in the guinea pig cochlea. Hearing Research, 1981, 4, 265-278.	2.0	19
94	Effects of noise on cochlear potentials and endolymph potassium concentration recorded with potassium-selective electrodes. Hearing Research, 1979, 1, 343-363.	2.0	50
95	Effects of exposure to noise on ion movement in guinea pig cochlea. Hearing Research, 1979, 1, 325-342.	2.0	69