

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8838602/publications.pdf

Version: 2024-02-01

XI LINC

#	Article	IF	CITATIONS
1	Electronic Raman scattering in the 2D antiferromagnet NiPS ₃ . Science Advances, 2022, 8, eabl7707.	4.7	13
2	Rapid, Multianalyte Detection of Opioid Metabolites in Wastewater. ACS Nano, 2022, 16, 3704-3714.	7.3	19
3	Phase-Controllable Synthesis of Ultrathin Molybdenum Nitride Crystals Via Atomic Substitution of MoS ₂ . Chemistry of Materials, 2022, 34, 351-357.	3.2	12
4	Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition. Nature Electronics, 2022, 5, 28-36.	13.1	44
5	Electrochemical Delamination of Ultralarge Fewâ€Layer Black Phosphorus with a Hydrogenâ€Free Intercalation Mechanism. Advanced Materials, 2021, 33, e2005815.	11.1	22
6	Reinforcing Magnetorheological Fluids with Highly Anisotropic 2D Materials. ChemPhysChem, 2021, 22, 435-440.	1.0	6
7	Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nature Communications, 2021, 12, 1587.	5.8	143
8	Reinforcing Magnetorheological Fluids with Highly Anisotropic 2D Materials. ChemPhysChem, 2021, 22, 432-432.	1.0	0
9	Graphene-Based Environmental Sensors: Electrical and Optical Devices. Molecules, 2021, 26, 2165.	1.7	6
10	Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals. Nature Materials, 2021, 20, 964-970.	13.3	59
11	Resonance-Enhanced Excitation of Interlayer Vibrations in Atomically Thin Black Phosphorus. Nano Letters, 2021, 21, 4809-4815.	4.5	8
12	Spontaneous Polarity Flipping in a 2D Heterobilayer Induced by Fluctuating Interfacial Carrier Flows. Nano Letters, 2021, 21, 6773-6780.	4.5	7
13	Vibrational Signature of Metallophilic Interactions in [Pt(terpy)Cl][Au(CN) ₂]. Journal of Physical Chemistry C, 2021, 125, 22188-22194.	1.5	7
14	Modulation Doping via a Two-Dimensional Atomic Crystalline Acceptor. Nano Letters, 2020, 20, 8446-8452.	4.5	44
15	A cleanroom in a glovebox. Review of Scientific Instruments, 2020, 91, 073909.	0.6	13
16	Deepâ€Learningâ€Enabled Fast Optical Identification and Characterization of 2D Materials. Advanced Materials, 2020, 32, e2000953.	11.1	54
17	Anisotropic Phonon Response of Fewâ€Layer PdSe ₂ under Uniaxial Strain. Advanced Functional Materials, 2020, 30, 2003215.	7.8	26
18	High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nature Electronics, 2020, 3, 466-472.	13.1	150

Xi Ling

#	Article	IF	CITATIONS
19	Dielectrophoresis assisted rapid, selective and single cell detection of antibiotic resistant bacteria with G-FETs. Biosensors and Bioelectronics, 2020, 156, 112123.	5.3	62
20	Realization of 2D crystalline metal nitrides via selective atomic substitution. Science Advances, 2020, 6, eaax8784.	4.7	66
21	2D Xenes: from fundamentals to applications. Nanophotonics, 2020, 9, 1555-1556.	2.9	4
22	Phonon Anharmonicity in Few-Layer Black Phosphorus. ACS Nano, 2019, 13, 10456-10468.	7.3	34
23	Superstrong and Tough Hydrogel through Physical Cross-Linking and Molecular Alignment. Biomacromolecules, 2019, 20, 4476-4484.	2.6	83
24	Direct Observation of Symmetry-Dependent Electron–Phonon Coupling in Black Phosphorus. Journal of the American Chemical Society, 2019, 141, 18994-19001.	6.6	21
25	Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature, 2019, 566, 368-372.	13.7	266
26	Asymmetric hot-carrier thermalization and broadband photoresponse in graphene-2D semiconductor lateral heterojunctions. Science Advances, 2019, 5, eaav1493.	4.7	43
27	Enhanced Raman Scattering on Nine 2D van der Waals Materials. Journal of Physical Chemistry Letters, 2019, 10, 3043-3050.	2.1	27
28	Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy. Nanomaterials, 2019, 9, 516.	1.9	31
29	Additive manufacturing of patterned 2D semiconductor through recyclable masked growth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3437-3442.	3.3	46
30	Probing the Domain Architecture in 2D αâ€Mo ₂ C via Polarized Raman Spectroscopy. Advanced Materials, 2019, 31, e1807160.	11.1	58
31	Fast and slow light generated by surface plasmon wave and gold grating coupling effects. Indian Journal of Physics, 2018, 92, 789-798.	0.9	11
32	Tuning Electronic Structure of Single Layer MoS ₂ through Defect and Interface Engineering. ACS Nano, 2018, 12, 2569-2579.	7.3	203
33	Channel resolution enhancement through scalability of nano/micro-scale thickness and width of SU-8 polymer based optical channels using UV lithography. Microsystem Technologies, 2018, 24, 1673-1681.	1.2	3
34	Anomalous Phonon Modes in Black Phosphorus Revealed by Resonant Raman Scattering. Journal of Physical Chemistry Letters, 2018, 9, 2830-2837.	2.1	17
35	Electrothermal Control of Graphene Plasmon–Phonon Polaritons. Advanced Materials, 2017, 29, 1700566.	11.1	24
36	Black Phosphorus: Ontical Characterization, Properties and Applications, Small 2017, 13, 1700823	5 2	63

Xi Ling

#	Article	IF	CITATIONS
37	Parallel Stitching of 2D Materials. Advanced Materials, 2016, 28, 2322-2329.	11.1	195
38	Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures. ACS Nano, 2016, 10, 11172-11178.	7.3	62
39	Controlled Sculpture of Black Phosphorus Nanoribbons. ACS Nano, 2016, 10, 5687-5695.	7.3	111
40	Quenching of photoluminescence of Rhodamine 6G molecules on functionalized graphene. Physica Status Solidi (B): Basic Research, 2016, 253, 2347-2350.	0.7	6
41	Ultrasmall Mode Volumes in Plasmonic Cavities of Nanoparticleâ€Onâ€Mirror Structures. Small, 2016, 12, 5190-5199.	5.2	53
42	In-Plane Optical Anisotropy of Layered Gallium Telluride. ACS Nano, 2016, 10, 8964-8972.	7.3	179
43	Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS ₂ . Nano Letters, 2016, 16, 1435-1444.	4.5	177
44	Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. Nano Letters, 2016, 16, 2260-2267.	4.5	328
45	Combining superior surface enhanced Raman scattering and photothermal conversion on one platform: a strategy of ill-defined gold nanoparticles. RSC Advances, 2015, 5, 27120-27125.	1.7	2
46	Lighting Up the Raman Signal of Molecules in the Vicinity of Graphene Related Materials. Accounts of Chemical Research, 2015, 48, 1862-1870.	7.6	141
47	The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4523-4530.	3.3	1,143
48	Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus. Nano Letters, 2015, 15, 4080-4088.	4.5	182
49	Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors. Nano Letters, 2015, 15, 3578-3584.	4.5	200
50	Molecular Selectivity of Graphene-Enhanced Raman Scattering. Nano Letters, 2015, 15, 2892-2901.	4.5	177
51	Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials. Journal of the American Chemical Society, 2015, 137, 15511-15517.	6.6	122
52	Graphene/MoS ₂ Hybrid Technology for Large-Scale Two-Dimensional Electronics. Nano Letters, 2014, 14, 3055-3063.	4.5	554
53	Role of the Seeding Promoter in MoS ₂ Growth by Chemical Vapor Deposition. Nano Letters, 2014, 14, 464-472.	4.5	633
54	Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation. Nano Research, 2014, 7, 1271-1279.	5.8	26

Xi Ling

#	Article	IF	CITATIONS
55	Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Physical Review B, 2014, 90, .	1.1	106
56	Probing the Interlayer Coupling of Twisted Bilayer MoS ₂ Using Photoluminescence Spectroscopy. Nano Letters, 2014, 14, 5500-5508.	4.5	228
57	Dielectric Screening of Excitons and Trions in Single-Layer MoS ₂ . Nano Letters, 2014, 14, 5569-5576.	4.5	520
58	Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS ₂ . Nano Letters, 2014, 14, 3033-3040.	4.5	464
59	Graphene-Thickness-Dependent Graphene-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2013, 117, 2369-2376.	1.5	93
60	Charge-Transfer Mechanism in Graphene-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2012, 116, 25112-25118.	1.5	154
61	Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Grapheneâ€Enhanced Raman Spectroscopy. Small, 2012, 8, 1365-1372.	5.2	105
62	Surface enhanced Raman spectroscopy on a flat graphene surface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9281-9286.	3.3	505
63	First‣ayer Effect in Grapheneâ€Enhanced Raman Scattering. Small, 2010, 6, 2020-2025.	5.2	207
64	Can Graphene be used as a Substrate for Raman Enhancement?. Nano Letters, 2010, 10, 553-561.	4.5	914