List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8838147/publications.pdf Version: 2024-02-01

	34493	54771
9,528	54	88
citations	h-index	g-index
211	211	9063
docs citations	times ranked	citing authors
	citations 211	9,528 54 citations h-index 211 211

#	Article	IF	CITATIONS
1	A Lateral Flow Test for <i>Staphylococcus aureus</i> in Nasal Mucus Using a New DNAzyme as the Recognition Element. Angewandte Chemie - International Edition, 2022, 61, e202112346.	7.2	24
2	A Universal DNA Aptamer that Recognizes Spike Proteins of Diverse SARSâ€CoVâ€2 Variants of Concern. Chemistry - A European Journal, 2022, 28, .	1.7	30
3	A Universal DNA Aptamer that Recognizes Spike Proteins of Diverse SARSâ€CoVâ€2 Variants of Concern. Chemistry - A European Journal, 2022, 28, e202200524.	1.7	9
4	Investigation of discordant SARS-CoV-2 RT-PCR results using minimally processed saliva. Scientific Reports, 2022, 12, 2806.	1.6	7
5	A Lateral Flow Test for <i>Staphylococcus aureus</i> in Nasal Mucus Using a New DNAzyme as the Recognition Element. Angewandte Chemie, 2022, 134, .	1.6	2
6	Aptamers for SARSâ€CoVâ€2: Isolation, Characterization, and Diagnostic and Therapeutic Developments. Analysis & Sensing, 2022, 2, .	1.1	17
7	Quantifying DNA damage on paper sensors <i>via</i> controlled template-independent DNA polymerization. Chemical Science, 2022, 13, 6496-6501.	3.7	2
8	Biosensing with DNAzymes. Chemical Society Reviews, 2021, 50, 8954-8994.	18.7	193
9	DNAzymes as key components of biosensing systems for the detection of biological targets. Biosensors and Bioelectronics, 2021, 177, 112972.	5.3	44
10	Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library. Nucleic Acids Research, 2021, 49, 7267-7279.	6.5	77
11	Quantitative Point-of-Care Colorimetric Assay Modeling Using a Handheld Colorimeter. ACS Omega, 2021, 6, 22439-22446.	1.6	7
12	Highâ€Affinity Dimeric Aptamers Enable the Rapid Electrochemical Detection of Wildâ€Type and B.1.1.7 SARSâ€CoVâ€2 in Unprocessed Saliva. Angewandte Chemie, 2021, 133, 24468-24476.	1.6	21
13	Highâ€Affinity Dimeric Aptamers Enable the Rapid Electrochemical Detection of Wildâ€Type and B.1.1.7 SARSâ€CoVâ€2 in Unprocessed Saliva. Angewandte Chemie - International Edition, 2021, 60, 24266-24274.	7.2	101
14	Targetâ€Dependent Protection of DNA Aptamers against Nucleolytic Digestion Enables Signalâ€On Biosensing with Toeholdâ€Mediated Rolling Circle Amplification. Chemistry - A European Journal, 2021, 27, 14543-14549.	1.7	4
15	Functional Nucleic Acids for Pathogenic Bacteria Detection. Accounts of Chemical Research, 2021, 54, 3540-3549.	7.6	54
16	Targetâ€Mediated 5'â€Exonuclease Digestion of DNA Aptamers with RecJ to Modulate Rolling Circle Amplification for Biosensing. ChemBioChem, 2021, , .	1.3	3
17	Engineering Micrometerâ€Sized DNA Tracks for Highâ€Speed DNA Synthesis and Biosensing. Angewandte Chemie, 2020, 132, 23147-23151.	1.6	3
18	Engineering Micrometerâ€6ized DNA Tracks for Highâ€6peed DNA Synthesis and Biosensing. Angewandte Chemie - International Edition, 2020, 59, 22947-22951.	7.2	10

#	Article	IF	CITATIONS
19	Rücktitelbild: Engineering Micrometerâ€Sized DNA Tracks for Highâ€Speed DNA Synthesis and Biosensing (Angew. Chem. 51/2020). Angewandte Chemie, 2020, 132, 23548-23548.	1.6	0
20	Inâ€Vitro Selection of a DNA Aptamer Targeting Degraded Protein Fragments for Biosensing. Angewandte Chemie, 2020, 132, 7780-7784.	1.6	6
21	Inâ€Vitro Selection of a DNA Aptamer Targeting Degraded Protein Fragments for Biosensing. Angewandte Chemie - International Edition, 2020, 59, 7706-7710.	7.2	49
22	A Multi omponent Allâ€DNA Biosensing System Controlled by a DNAzyme. Angewandte Chemie - International Edition, 2020, 59, 10401-10405.	7.2	45
23	A Multi omponent Allâ€DNA Biosensing System Controlled by a DNAzyme. Angewandte Chemie, 2020, 132, 10487-10491.	1.6	2
24	Proteinâ€Mediated Suppression of Rolling Circle Amplification for Biosensing with an Aptamer ontaining DNA Primer. Chemistry - A European Journal, 2020, 26, 5085-5092.	1.7	27
25	A paper-based biosensor for visual detection of glucose-6-phosphate dehydrogenase from whole blood. Analyst, The, 2020, 145, 1817-1824.	1.7	13
26	In Vitro Selection of Circular DNA Aptamers for Biosensing Applications. Angewandte Chemie, 2019, 131, 8097-8101.	1.6	8
27	Printed Thin Films with Controlled Porosity as Lateral Flow Media. Industrial & Engineering Chemistry Research, 2019, 58, 21014-21021.	1.8	4
28	A DNAzymeâ€Based Colorimetric Paper Sensor for <i>Helicobacter pylori</i> . Angewandte Chemie, 2019, 131, 10012-10016.	1.6	29
29	A DNAzymeâ€Based Colorimetric Paper Sensor for <i>Helicobacter pylori</i> . Angewandte Chemie - International Edition, 2019, 58, 9907-9911.	7.2	115
30	In Vitro Selection of Circular DNA Aptamers for Biosensing Applications. Angewandte Chemie - International Edition, 2019, 58, 8013-8017.	7.2	69
31	Enzymatic Litmus Test for Selective Colorimetric Detection of C–C Single Nucleotide Polymorphisms. Analytical Chemistry, 2019, 91, 4735-4740.	3.2	24
32	Deposited Nanoparticles Can Promote Air Clogging of Piezoelectric Inkjet Printhead Nozzles. Langmuir, 2019, 35, 5517-5524.	1.6	22
33	Investigation of RNA structure-switching aptamers in tunable sol–gel-derived materials. Journal of Sol-Gel Science and Technology, 2019, 89, 234-243.	1.1	2
34	A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angewandte Chemie - International Edition, 2018, 57, 4549-4553.	7.2	73
35	Frontispiece: DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification. Chemistry - A European Journal, 2018, 24, .	1.7	0
36	A Paper Sensor Printed with Multifunctional Bio/Nano Materials. Angewandte Chemie, 2018, 130, 4639-4643.	1.6	21

#	Article	IF	CITATIONS
37	Selection and characterization of DNA aptamers for detection of glutamate dehydrogenase from Clostridium difficile. Biochimie, 2018, 145, 151-157.	1.3	20
38	DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification. Chemistry - A European Journal, 2018, 24, 4473-4479.	1.7	21
39	Graphene-DNAzyme-based fluorescent biosensor for Escherichia coli detection. MRS Communications, 2018, 8, 687-694.	0.8	40
40	Selfâ€Assembled Functional DNA Superstructures as Highâ€Density and Versatile Recognition Elements for Printed Paper Sensors. Angewandte Chemie, 2018, 130, 12620-12623.	1.6	19
41	Selfâ€Assembled Functional DNA Superstructures as Highâ€Density and Versatile Recognition Elements for Printed Paper Sensors. Angewandte Chemie - International Edition, 2018, 57, 12440-12443.	7.2	58
42	Optimizing piezoelectric inkjet printing of silica sols for biosensor production. Journal of Sol-Gel Science and Technology, 2018, 87, 657-664.	1.1	13
43	RNA Protection is Effectively Achieved by Pullulan Film Formation. ChemBioChem, 2017, 18, 502-505.	1.3	22
44	Automating multi-step paper-based assays using integrated layering of reagents. Lab on A Chip, 2017, 17, 943-950.	3.1	20
45	Sol–Gelâ€Derived Biohybrid Materials Incorporating Longâ€Chain DNA Aptamers. Angewandte Chemie - International Edition, 2017, 56, 10686-10690.	7.2	18
46	A DNAzyme Feedback Amplification Strategy for Biosensing. Angewandte Chemie, 2017, 129, 6238-6242.	1.6	37
47	A DNAzyme Feedback Amplification Strategy for Biosensing. Angewandte Chemie - International Edition, 2017, 56, 6142-6146.	7.2	126
48	A Printed Multicomponent Paper Sensor for Bacterial Detection. Scientific Reports, 2017, 7, 12335.	1.6	82
49	Innentitelbild: Sol–Gelâ€Derived Biohybrid Materials Incorporating Long hain DNA Aptamers (Angew.) Tj E	TQq1_1 0.7 1.6	784314 rgBT
50	Sol–Gelâ€Derived Biohybrid Materials Incorporating Longâ€Chain DNA Aptamers. Angewandte Chemie, 2017, 129, 10826-10830.	1.6	2
51	Targetâ€Induced and Equipmentâ€Free DNA Amplification with a Simple Paper Device. Angewandte Chemie, 2016, 128, 2759-2763.	1.6	38
52	Programming a topologically constrained DNA nanostructure into a sensor. Nature Communications, 2016, 7, 12074.	5.8	67
53	Development of a functional point-of-need diagnostic for myeloperoxidase detection to identify neutrophilic bronchitis. Analyst, The, 2016, 141, 6438-6443.	1.7	10
54	Targetâ€Induced and Equipmentâ€Free DNA Amplification with a Simple Paper Device. Angewandte Chemie - International Edition, 2016, 55, 2709-2713.	7.2	113

#	Article	IF	CITATIONS
55	Simple and ultrastable all-inclusive pullulan tablets for challenging bioassays. Chemical Science, 2016, 7, 2342-2346.	3.7	36
56	Biosensing by Tandem Reactions of Structure Switching, Nucleolytic Digestion, and DNA Amplification of a DNA Assembly. Angewandte Chemie - International Edition, 2015, 54, 9637-9641.	7.2	63
57	Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Research, 2015, 70, 360-369.	5.3	176
58	Design Rules for Fluorocarbon-Free Omniphobic Solvent Barriers in Paper-Based Devices. ACS Applied Materials & Interfaces, 2015, 7, 25434-25440.	4.0	9
59	Patterned Paper Sensors Printed with Longâ€Chain DNA Aptamers. Chemistry - A European Journal, 2015, 21, 7369-7373.	1.7	66
60	Integrating graphene oxide, functional DNA and nucleic-acid-manipulating strategies for amplified biosensing. TrAC - Trends in Analytical Chemistry, 2015, 74, 120-129.	5.8	33
61	Printed Paper Sensors for Serum Lactate Dehydrogenase using Pullulan-Based Inks to Immobilize Reagents. Analytical Chemistry, 2015, 87, 9288-9293.	3.2	66
62	Tailoring the properties of sub-3 μm silica core–shell particles prepared by a multilayer-by-multilayer process. Journal of Colloid and Interface Science, 2015, 437, 50-57.	5.0	14
63	Evaluation of the Calmodulinâ€SOX9 Interaction by "Magnetic Fishing―Coupled to Mass Spectrometry. ChemBioChem, 2014, 15, 2411-2419.	1.3	1
64	Simultaneous Inhibition Assay for Human and Microbial Kinases via MALDIâ€MS/MS. ChemBioChem, 2014, 15, 587-594.	1.3	5
65	Pullulan Encapsulation of Labile Biomolecules to Give Stable Bioassay Tablets. Angewandte Chemie - International Edition, 2014, 53, 6155-6158.	7.2	75
66	Hydrophobic sol–gel channel patterning strategies for paper-based microfluidics. Lab on A Chip, 2014, 14, 691-695.	3.1	137
67	Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff. Lab on A Chip, 2014, 14, 229-236.	3.1	89
68	Stoichiometrically controlled production of bimetallic Gold-Silver alloy colloids using micro-alga cultures. Journal of Colloid and Interface Science, 2014, 416, 67-72.	5.0	55
69	Delineation of key XRCC4/Ligase IV interfaces for targeted disruption of non-homologous end joining DNA repair. Proteins: Structure, Function and Bioinformatics, 2014, 82, 187-194.	1.5	7
70	An inkjet-printed bioactive paper sensor that reports ATP through odour generation. Analyst, The, 2014, 139, 4775.	1.7	10
71	Printing silicone-based hydrophobic barriers on paper for microfluidic assays using low-cost ink jet printers. Analyst, The, 2014, 139, 6361-6365.	1.7	54
72	An automated materials screening approach for the development of sol–gel derived monolithic silica enzyme reactor columns. RSC Advances, 2014, 4, 15952.	1.7	8

#	Article	IF	CITATIONS
73	Bio-Solid-Phase Extraction/Tandem Mass Spectrometry for Identification of Bioactive Compounds in Mixtures. Analytical Chemistry, 2014, 86, 8457-8465.	3.2	10
74	A rapid and sensitive fluorimetric β-galactosidase assay for coliform detection using chlorophenol red-β-d-galactopyranoside. Analytical and Bioanalytical Chemistry, 2014, 406, 5395-5403.	1.9	24
75	Poly(oligoethylene glycol methacrylate) Dip-Coating: Turning Cellulose Paper into a Protein-Repellent Platform for Biosensors. Journal of the American Chemical Society, 2014, 136, 12852-12855.	6.6	42
76	Solid-Phase Biological Assays for Drug Discovery. Annual Review of Analytical Chemistry, 2014, 7, 337-359.	2.8	16
77	Fluorescence Analysis of the Properties of Structure-Switching DNA Aptamers Entrapped in Sol–Gel-Derived Silica Materials. Chemistry of Materials, 2014, 26, 1896-1904.	3.2	14
78	A Graphene-Based Biosensing Platform Based on the Release of DNA Probes and Rolling Circle Amplification. ACS Nano, 2014, 8, 5564-5573.	7.3	139
79	Morphology and Entrapped Enzyme Performance in Inkjet-Printed Sol–Gel Coatings on Paper. Chemistry of Materials, 2014, 26, 1941-1947.	3.2	33
80	Functional nucleic acid entrapment in sol–gel derived materials. Methods, 2013, 63, 255-265.	1.9	6
81	A matrix-assisted laser desorption/ionization tandem mass spectrometry method for direct screening of small molecule mixtures against an aminoglycoside kinase. Analytica Chimica Acta, 2013, 786, 103-110.	2.6	9
82	Bioactive paper: Biomolecule immobilization methods and applications in environmental monitoring. MRS Bulletin, 2013, 38, 331-334.	1.7	27
83	Entrapment of Living Bacterial Cells in Low-Concentration Silica Materials Preserves Cell Division and Promoter Regulation. Chemistry of Materials, 2013, 25, 4798-4805.	3.2	23
84	Sol–Gel-Derived Materials for Production of Pin-Printed Reporter Gene Living-Cell Microarrays. Analytical Chemistry, 2013, 85, 12108-12117.	3.2	12
85	Flexographic printability of sol-gel precursor dispersions for bioactive paper. Nordic Pulp and Paper Research Journal, 2013, 28, 450-457.	0.3	5
86	One-pot synthesis of silica core–shell particles with double shells and different pore orientations from their nonporous counterparts. Journal of Materials Chemistry, 2012, 22, 13197.	6.7	30
87	Effects of Temperature and Relative Humidity on the Stability of Paper-Immobilized Antibodies. Biomacromolecules, 2012, 13, 559-564.	2.6	47
88	Stabilizing Structure-Switching Signaling RNA Aptamers by Entrapment in Sol–Gel Derived Materials for Solid-Phase Assays. Journal of the American Chemical Society, 2012, 134, 10998-11005.	6.6	47
89	Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab on A Chip, 2012, 12, 5079.	3.1	118
90	Tailoring Sol–Gel-Derived Silica Materials for Optical Biosensing. Chemistry of Materials, 2012, 24, 796-811.	3.2	114

#	Article	IF	CITATIONS
91	Multiplexed paper test strip for quantitative bacterial detection. Analytical and Bioanalytical Chemistry, 2012, 403, 1567-1576.	1.9	194
92	Materials Screening for Sol–Gel-Derived High-Density Multi-Kinase Microarrays. Chemistry of Materials, 2011, 23, 3685-3691.	3.2	13
93	Surface Immobilization of Structure-Switching DNA Aptamers on Macroporous Solâ^'Gel-Derived Films for Solid-Phase Biosensing Applications. Analytical Chemistry, 2011, 83, 957-965.	3.2	40
94	Enhancing Sensitivity and Selectivity of Long-Period Grating Sensors using Structure-Switching Aptamers Bound to Gold-Doped Macroporous Silica Coatings. Analytical Chemistry, 2011, 83, 7984-7991.	3.2	27
95	β-Galactosidase-Based Colorimetric Paper Sensor for Determination of Heavy Metals. Analytical Chemistry, 2011, 83, 8772-8778.	3.2	272
96	Continuous Flow Immobilized Enzyme Reactor–Tandem Mass Spectrometry for Screening of AChE Inhibitors in Complex Mixtures. Analytical Chemistry, 2011, 83, 5230-5236.	3.2	38
97	Structure–activity studies on acetylcholinesterase inhibition in the lycorine series of Amaryllidaceae alkaloids. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5290-5294.	1.0	55
98	Magnetic "Fishing―Assay To Screen Small-Molecule Mixtures for Modulators of Proteinâ^'Protein Interactions. Analytical Chemistry, 2010, 82, 9850-9857.	3.2	25
99	A Solâ^'Gel-Derived Acetylcholinesterase Microarray for Nanovolume Small-Molecule Screening. Analytical Chemistry, 2010, 82, 9365-9373.	3.2	33
100	Bioactive paper dipstick sensors for acetylcholinesterase inhibitors based on sol–gel/enzyme/gold nanoparticle composites. Analyst, The, 2010, 135, 2028.	1.7	101
101	Probing the dynamics of domain III of human serum albumin entrapped in sol–gel derived silica using a Sudlow's site II specific fluorescent ligand. Journal of Sol-Gel Science and Technology, 2009, 50, 184-193.	1.1	6
102	Reagentless Bidirectional Lateral Flow Bioactive Paper Sensors for Detection of Pesticides in Beverage and Food Samples. Analytical Chemistry, 2009, 81, 9055-9064.	3.2	285
103	Functionalized Carborane Complexes of the [M(CO) ₂ (NO)] ²⁺ Core (M =) Tj ETQq1 1 C Vivo).784314 1.1	rgBT /Overlo 32
104	Development of a Bioactive Paper Sensor for Detection of Neurotoxins Using Piezoelectric Inkjet Printing of Solâ^'Gel-Derived Bioinks. Analytical Chemistry, 2009, 81, 5474-5483.	3.2	247
105	Macroporous silica using a "sticky―Stöber process. Journal of Materials Chemistry, 2009, 19, 1583.	6.7	19
106	An ESIâ€MS/MS Method for Screening of Smallâ€Molecule Mixtures against Glycogen Synthase Kinaseâ€3β (GSKâ€3β). ChemBioChem, 2008, 9, 1065-1073.	1.3	13
107	Water-in-Silicone Oil Emulsion Stabilizing Surfactants Formed From Native Albumin and α,ï‰-Triethoxysilylpropyl-Polydimethylsiloxane. Biomacromolecules, 2008, 9, 2153-2161.	2.6	21
108	Solid-phase assays for small molecule screening using sol-gel entrapped proteinsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Systems and Chemical Biology, and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2008, 86, 100-110.	0.9	17

#	Article	IF	CITATIONS
109	Assaying Small-Moleculeâ^'Receptor Interactions by Continuous Flow Competitive Displacement Chromatography/Mass Spectrometry. Analytical Chemistry, 2008, 80, 3213-3220.	3.2	19
110	Quantification of Cell Proliferation and Alpha-Toxin Gene Expression of <i>Clostridium perfringens</i> in the Development of Necrotic Enteritis in Broiler Chickens. Applied and Environmental Microbiology, 2007, 73, 7110-7113.	1.4	46
111	Towards the development of a covalently tethered MALDI system — A study of allyl-modified MALDI matrixes. Canadian Journal of Chemistry, 2007, 85, 66-76.	0.6	11
112	Entrapment of Fluorescence Signaling DNA Enzymes in Solâ ''Gel-Derived Materials for Metal Ion Sensing. Analytical Chemistry, 2007, 79, 3494-3503.	3.2	60
113	Non-destructive horseradish peroxidase immobilization in porous silica nanoparticles. Journal of Materials Chemistry, 2007, 17, 4854.	6.7	31
114	Effect of Ormosil and Polymer Doping on the Morphology of Separately and Co-hydrolyzed Silica Films Formed by a Two-Step Aqueous Processing Method. Chemistry of Materials, 2007, 19, 5336-5346.	3.2	12
115	Biofriendly Sol–Gel Processing for the Entrapment of Soluble and Membrane-Bound Proteins: Toward Novel Solid-Phase Assays for High-Throughput Screening. Accounts of Chemical Research, 2007, 40, 827-835.	7.6	69
116	Entrapment of horseradish peroxidase in sugar-modified silica monoliths: Toward the development of a biocatalytic sensor. Biosensors and Bioelectronics, 2007, 22, 1861-1867.	5.3	38
117	Sensitization of Lanthanides by Nonnatural Amino Acids¶. Photochemistry and Photobiology, 2007, 75, 117-121.	1.3	0
118	Development of Macroporous Titania Monoliths Using a Biocompatible Method. Part 1:Â Material Fabrication and Characterization. Chemistry of Materials, 2006, 18, 5326-5335.	3.2	53
119	Two-Site Ionic Labeling with Pyranine:Â Implications for Structural Dynamics Studies of Polymers and Polypeptides by Time-Resolved Fluorescence Anisotropy. Journal of the American Chemical Society, 2006, 128, 5496-5505.	6.6	13
120	Quantifying Surface Coverage of Colloidal Silica by a Cationic Peptide Using a Combined Centrifugation/Time-Resolved Fluorescence Anisotropy Approach. Langmuir, 2006, 22, 1852-1857.	1.6	6
121	Monitoring the Distribution of Covalently Tethered Sugar Moieties in Solâ^'Gel-Based Silica Monoliths with Fluorescence Anisotropy:Â Implications for Entrapped Enzyme Activity. Chemistry of Materials, 2006, 18, 887-896.	3.2	12
122	Controlling the Morphology of Methylsilsesquioxane Monoliths Using a Two-Step Processing Method. Chemistry of Materials, 2006, 18, 541-546.	3.2	35
123	Development of Macroporous Titania Monoliths by a Biocompatible Method. Part 2:Â Enzyme Entrapment Studies. Chemistry of Materials, 2006, 18, 5336-5342.	3.2	22
124	Macroporous Monolithic Methylsilsesquioxanes Prepared by a Two-Step Acid/Acid Processing Method. Chemistry of Materials, 2006, 18, 4176-4182.	3.2	44
125	Quenching of Fluorophore-Labeled DNA Oligonucleotides by Divalent Metal Ions:Â Implications for Selection, Design, and Applications of Signaling Aptamers and Signaling Deoxyribozymes. Journal of the American Chemical Society, 2006, 128, 780-790.	6.6	86
126	Monolithic membrane-receptor columns: Optimization of column performance for frontal affinity chromatography/mass spectrometry applications. Analytica Chimica Acta, 2006, 561, 107-118.	2.6	32

#	Article	IF	CITATIONS
127	Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases. Analytica Chimica Acta, 2006, 564, 106-115.	2.6	48
128	Entrapment of membrane proteins in sol-gel derived silica. Journal of Sol-Gel Science and Technology, 2006, 40, 209-225.	1.1	52
129	Catalysis and Rational Engineering of trans-Acting pH6DZ1, an RNA-Cleaving and Fluorescence-Signaling Deoxyribozyme with a Four-Way Junction Structure. ChemBioChem, 2006, 7, 1343-1348.	1.3	49
130	Solid-Phase Enzyme Activity Assay Utilizing an Entrapped Fluorescence-Signaling DNA Aptamer. Angewandte Chemie - International Edition, 2006, 45, 3295-3299.	7.2	64
131	Macroporous Silica Monoliths Derived from Glyceroxysilanes: Controlling Gel Formation and Pore Structure. Macromolecular Symposia, 2005, 226, 253-262.	0.4	5
132	Interferences in Fluo-3 based ion-flux assays for ligand-gated-ion channels. Analytica Chimica Acta, 2005, 537, 125-134.	2.6	2
133	Using light to drive biosynthesis. Nature Materials, 2005, 4, 189-190.	13.3	8
134	A New Route to Monolithic Methylsilsesquioxanes:Â Gelation Behavior of Methyltrimethoxysilane and Morphology of Resulting Methylsilsesquioxanes under One-Step and Two-Step Processing. Chemistry of Materials, 2005, 17, 2807-2816.	3.2	108
135	Reduced shrinkage of sol–gel derived silicas using sugar-based silsesquioxane precursors. Journal of Materials Chemistry, 2005, 15, 3132.	6.7	30
136	Nanovolume Kinase Inhibition Assay Using a Solâ^'Gel-Derived Multicomponent Microarray. Analytical Chemistry, 2005, 77, 8013-8019.	3.2	25
137	Shrinkage and Springback Behavior of Methylsilsesquioxanes Prepared by an Acid/Base Two-Step Processing Procedure. Chemistry of Materials, 2005, 17, 6012-6017.	3.2	17
138	Inhibitor Screening Using Immobilized Enzyme Reactor Chromatography/Mass Spectrometry. Analytical Chemistry, 2005, 77, 7512-7519.	3.2	57
139	Properties of Human Serum Albumin Entrapped in Solâ^'Gel-Derived Silica Bearing Covalently Tethered Sugars. Chemistry of Materials, 2005, 17, 1174-1182.	3.2	47
140	Direct and Indirect Monitoring of Peptideâ^'Silica Interactions Using Time-Resolved Fluorescence Anisotropy. Langmuir, 2005, 21, 4996-5001.	1.6	16
141	Capillary-Scale Monolithic Immunoaffinity Columns for Immunoextraction with In-Line Laser-Induced Fluorescence Detection. Analytical Chemistry, 2005, 77, 4404-4412.	3.2	42
142	Evidence for Rigid Binding of Rhodamine 6G to Silica Surfaces in Aqueous Solution Based on Fluorescence Anisotropy Decay Analysis. Journal of Physical Chemistry B, 2005, 109, 7850-7858.	1.2	22
143	Entrapment of Fluorescent Signaling DNA Aptamers in Solâ^'Gel-Derived Silica. Analytical Chemistry, 2005, 77, 4300-4307.	3.2	81
144	Capillary-Scale Frontal Affinity Chromatography/MALDI Tandem Mass Spectrometry Using Protein-Doped Monolithic Silica Columns. Analytical Chemistry, 2005, 77, 3340-3350.	3.2	53

#	Article	IF	CITATIONS
145	Proteins Entrapped in Silica Monoliths Prepared from Glyceroxysilanes. Journal of Sol-Gel Science and Technology, 2004, 31, 343-348.	1.1	52
146	Time-Resolved Fluorescence Anisotropy in Assessing Side-Chain and Segmental Motions in Polyamines Entrapped in Solâ^'Gel Derived Silica. Journal of Physical Chemistry B, 2004, 108, 10692-10699.	1.2	13
147	Protein-Doped Monolithic Silica Columns for Capillary Liquid Chromatography Prepared by the Solâ^'Gel Method:Â Applications to Frontal Affinity Chromatography. Analytical Chemistry, 2004, 76, 2780-2790.	3.2	93
148	Sugar-modified silanes: precursors for silica monoliths. Journal of Materials Chemistry, 2004, 14, 1469-1479.	6.7	122
149	Entrapment of Highly Active Membrane-Bound Receptors in Macroporous Solâ^'Gel Derived Silica. Analytical Chemistry, 2004, 76, 6470-6475.	3.2	52
150	Evaluating Formation and Growth Mechanisms of Silica Particles Using Fluorescence Anisotropy Decay Analysis. Langmuir, 2004, 20, 5924-5932.	1.6	31
151	Bridging the Gap between in Vitro and in Vivo Imaging:Â Isostructural Re and99mTc Complexes for Correlating Fluorescence and Radioimaging Studies. Journal of the American Chemical Society, 2004, 126, 8598-8599.	6.6	200
152	Fluorescence Anisotropy in Studies of Solute Interactions with Covalently Modified Colloidal Silica Nanoparticles. Langmuir, 2004, 20, 848-854.	1.6	33
153	Monitoring Solute Interactions with Poly(ethylene oxide)-Modified Colloidal Silica Nanoparticles via Fluorescence Anisotropy Decay. Langmuir, 2004, 20, 101-108.	1.6	25
154	Ultrasensitive ATP Detection Using Firefly Luciferase Entrapped in Sugar-Modified Solâ^'Gel-Derived Silica. Journal of the American Chemical Society, 2004, 126, 6878-6879.	6.6	99
155	Entrapment of Src Protein Tyrosine Kinase in Sugar-Modified Silica. Analytical Chemistry, 2004, 76, 4182-4188.	3.2	51
156	Coupled enzyme reaction microarrays based on pin-printing of sol–gel derived biomaterials. Analytica Chimica Acta, 2003, 500, 3-12.	2.6	31
157	Using Sugar and Amino Acid Additives to Stabilize Enzymes within Solâ^'Gel Derived Silica. Chemistry of Materials, 2003, 15, 737-745.	3.2	82
158	Assemblage of Signaling DNA Enzymes with Intriguing Metal-Ion Specificities and pH Dependences. Journal of the American Chemical Society, 2003, 125, 7539-7545.	6.6	150
159	Optimization of Solâ~'Gel Formulations and Surface Treatments for the Development of Pin-Printed Protein Microarrays. Chemistry of Materials, 2003, 15, 1803-1811.	3.2	60
160	Ion Sensing and Inhibition Studies Using the Transmembrane Ion Channel Peptide Gramicidin A Entrapped in Solâ^Gel-Derived Silica. Analytical Chemistry, 2003, 75, 1094-1101.	3.2	27
161	Evolution of Sodium Silicate Sols through the Sol-to-Gel Transition Assessed by the Fluorescence-Based Nanoparticle Metrology Approach. Journal of Physical Chemistry B, 2003, 107, 10127-10133.	1.2	21
162	Screening of Inhibitors Using Enzymes Entrapped in Solâ^'Gel-Derived Materials. Analytical Chemistry, 2003, 75, 2382-2391.	3.2	85

#	Article	IF	CITATIONS
163	An Efficient RNA-Cleaving DNA Enzyme that Synchronizes Catalysis with Fluorescence Signaling. Journal of the American Chemical Society, 2003, 125, 412-420.	6.6	201
164	Sensitization of Lanthanides by Nonnatural Amino Acids¶. Photochemistry and Photobiology, 2002, 75, 117.	1.3	9
165	Characterization of Bodipy Dimers Formed in a Molecularly Confined Environment. Journal of Physical Chemistry B, 2002, 106, 13133-13138.	1.2	68
166	Characterization of Fluorescent Phospholipid Liposomes Entrapped in Solâ^'Gel Derived Silica. Journal of Physical Chemistry B, 2002, 106, 10535-10542.	1.2	40
167	Fluorescence and physical characterization of sol–gel-derived nanocomposite films suitable for the entrapment of biomolecules. Journal of Materials Chemistry, 2002, 12, 3400-3406.	6.7	27
168	Reagentless pH-based biosensing using a fluorescently-labelled dextran co-entrapped with a hydrolytic enzyme in sol–gel derived nanocomposite films. Analytica Chimica Acta, 2002, 457, 47-59.	2.6	37
169	Properties and applications of proteins encapsulated within sol–gel derived materials. Analytica Chimica Acta, 2002, 461, 1-36.	2.6	483
170	Screening of antagonists based on induced dissociation of a calmodulin–melittin interaction entrapped in a sol–gel derived matrix. Analytica Chimica Acta, 2002, 470, 19-28.	2.6	3
171	Fluorescent Probes as Reporters on the Local Structure and Dynamics in Solâ~'Gel-Derived Nanocomposite Materials. Chemistry of Materials, 2001, 13, 3331-3350.	3.2	127
172	Effect of Matrix Aging on the Behavior of Human Serum Albumin Entrapped in a Tetraethyl Orthosilicate-Derived Glass. Chemistry of Materials, 2001, 13, 4170-4179.	3.2	77
173	Characterization of the Microenvironments of PRODAN Entrapped in Tetraethyl Orthosilicate Derived Glasses. Journal of Physical Chemistry B, 2001, 105, 12003-12010.	1.2	25
174	Controlling the Material Properties and Biological Activity of Lipase within Solâ^'Gel Derived Bioglasses via Organosilane and Polymer Doping. Chemistry of Materials, 2000, 12, 3695-3704.	3.2	79
175	Probing the Origins of Spectroscopic Responses to Analyte-Induced Conformational Changes in Fluorescently-Labeled Cod III Parvalbumin. Journal of Physical Chemistry B, 2000, 104, 10100-10110.	1.2	16
176	Title is missing!. Journal of Fluorescence, 1999, 9, 295-312.	1.3	17
177	Comparison of formats for the development of fiber-optic biosensors utilizing sol–gel derived materials entrapping fluorescently-labelled protein. Analyst, The, 1999, 124, 1455-1462.	1.7	25
178	Fluorescence and NMR Characterization and Biomolecule Entrapment Studies of Solâ^'Gel-Derived Organicâ^'Inorganic Composite Materials Formed by Sonication of Precursors. Chemistry of Materials, 1999, 11, 1853-1864.	3.2	56
179	Using Intrinsic Fluorescence to Investigate Proteins Entrapped in Sol-Gel Derived Materials. Applied Spectroscopy, 1999, 53, 106A-121A.	1.2	72
180	The effect of preparation and aging conditions on the internal environment of sol-gel derived materials as probed by 7-azaindole and pyranine fluorescence. Canadian Journal of Chemistry, 1999, 77, 1617-1625.	0.6	11

#	Article	IF	CITATIONS
181	Effects of metal binding affinity on the chemical and thermal stability of site-directed mutants of rat oncomodulin. Biophysical Chemistry, 1998, 71, 157-172.	1.5	7
182	Measurement of intrinsic fluorescence to probe the conformational flexibility and thermodynamic stability of a single tryptophan protein entrapped in a sol–gel derived glass matrix. Analyst, The, 1998, 123, 1735-1744.	1.7	85
183	Fluorometric Detection of Ca2+Based on an Induced Change in the Conformation of Solâ^'Gel Entrapped Parvalbumin. Analytical Chemistry, 1998, 70, 4505-4513.	3.2	59
184	Unfolding of Acrylodan-Labeled Human Serum Albumin Probed by Steady-State and Time-Resolved Fluorescence Methods. Biophysical Journal, 1998, 75, 1084-1096.	0.2	174
185	Improving the Performance of a Solâ^'Gel-Entrapped Metal-Binding Protein by Maximizing Protein Thermal Stability before Entrapment. Chemistry of Materials, 1998, 10, 3974-3983.	3.2	61
186	Transduction of Analytical Signals by Supramolecular Assemblies of Amphiphiles Containing Heterogeneously Distributed Fluorophores Analytical Sciences, 1998, 14, 141-149.	0.8	1
187	Measurement of Fluorescence from Tryptophan To Probe the Environment and Reaction Kinetics within Protein-Doped Solâ^'Gel-Derived Glass Monoliths. Analytical Chemistry, 1997, 69, 3940-3949.	3.2	87
188	Selection of data from the mass of information. Library Collections Acquisitions and Technical Services, 1997, 21, 303-317.	0.2	2
189	Preparation of Enantiomerically Purel-7-Azatryptophan by an Enzymatic Method and Its Application to the Development of a Fluorimetric Activity Assay for Tryptophanyl-tRNA Synthetase. Analytical Biochemistry, 1997, 252, 260-270.	1.1	9
190	Towards a homogeneous fluorescence assay for a herbicide: characterization of the interactions of fusilade, bromomethylmethoxy coumarin derivatized fusilade, and anti-fusilade IgG antibody. Analytica Chimica Acta, 1996, 336, 157-166.	2.6	4
191	Assembly of antibodies in lipid membranes for biosensor development. Applied Biochemistry and Biotechnology, 1995, 53, 163-181.	1.4	13
192	Depth Profiling of Functionalized Silane Films on Quartz and Silicon Substrates and of Urease Immobilized on Such Films by Angle-Resolved X-ray Photoelectron Spectroscopy. Analytical Chemistry, 1995, 67, 2625-2634.	3.2	15
193	Optimization of the Self-Quenching Response of Nitrobenzoxadiazole Dipalmitoylphosphatidylethanolamine in Phospholipid Membranes for Biosensor Development. Applied Spectroscopy, 1995, 49, 304-313.	1.2	10
194	1994 McBryde Medal Award Lecture Investigations of organized monolayer films for biosensor development. Canadian Journal of Chemistry, 1995, 73, 1239-1250.	0.6	11
195	Transduction of the reaction between urea and covalently immobilized urease by fluorescent amphiphilic membranes. Thin Solid Films, 1994, 244, 898-904.	0.8	8
196	Bilayer lipid membranes as electrochemical switches in reactions involving alteration of surface charge. Thin Solid Films, 1994, 244, 917-922.	0.8	11
197	Fluorimetric measurement of the activity of surface-immobilized monolayers of enzyme using a dual emission probe. Canadian Journal of Chemistry, 1994, 72, 721-728.	0.6	7
198	Selfâ€quenching of nitrobenzoxadiazole labeled phospholipids in lipid membranes. Journal of Chemical Physics, 1994, 100, 6019-6027.	1.2	51

#	Article	IF	CITATIONS
199	Covalent immobilization of amphiphilic monolayers containing urease onto optical fibers for fluorimetric detection of urea. Sensors and Actuators B: Chemical, 1993, 11, 109-119.	4.0	18
200	New electrochemical sensors. Analytical Proceedings, 1991, 28, 366.	0.4	16
201	Ion permeability through bilayer lipid membranes for biosensor development: control by chemical modification of interfacial regions between phase domains. Analyst, The, 1991, 116, 1221.	1.7	17
202	Hydronium ion sensitivity of surface stabilized stearic acid membranes prepared by Langmuir-Blodgett monolayer transfer. Thin Solid Films, 1991, 203, 173-184.	0.8	8
203	Fluorescence transduction of an enzyme-substrate reaction by covalently immobilized monolayers of amphiphiles. Analytica Chimica Acta, 1991, 255, 73-82.	2.6	13
204	Fluorescence transduction of an enzyme-substrate reaction by modulation of lipid membrane structure. Analytica Chimica Acta, 1990, 237, 253-263.	2.6	21