List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8838092/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The degree of joint range of motion limitations after burn injuries during recovery. Burns, 2022, 48, 309-318.	1.1	6
2	The development of burn scar contractures and impact on joint function, disability and quality of life in low- and middle-income countries: A prospective cohort study with one-year follow-up. Burns, 2022, 48, 215-227.	1.1	6
3	Validity of laser speckle contrast imaging for the prediction of burn wound healing potential. Burns, 2022, 48, 319-327.	1.1	6
4	Acute burn care in resource-limited settings: A cohort study on treatment and outcomes in a rural regional referral hospital in Tanzania. Burns, 2022, 48, 1966-1979.	1.1	2
5	A Bayesian finite-element trained machine learning approach for predicting post-burn contraction. Neural Computing and Applications, 2022, , 1-8.	3.2	0
6	The Future of Burn Care From a Complexity Science Perspective. Journal of Burn Care and Research, 2022, 43, 1312-1321.	0.2	6
7	Burn Unit Design—The Missing Link for Quality and Safety. Journal of Burn Care and Research, 2021, 42, 369-375.	0.2	5
8	No Change in Fireworks-Related Burn Center Admissions: A 10-Year Analysis of the Admission Rates, Treatment, and Costs. European Journal of Burn Care, 2021, 2, 31-40.	0.4	0
9	The effect of TGFβRI inhibition on extracellular matrix structure and stiffness in hypertrophic scar-specific fibroblast-derived matrix models. Biochemical and Biophysical Research Communications, 2021, 559, 245-251.	1.0	1
10	Sensitivity and feasibility of a one-dimensional morphoelastic model for post-burn contraction. Biomechanics and Modeling in Mechanobiology, 2021, 20, 2147-2167.	1.4	3
11	Stability of a one-dimensional morphoelastic model for post-burn contraction. Journal of Mathematical Biology, 2021, 83, 24.	0.8	8
12	Burn scar contracture release surgery effectively improves functional range of motion, disability and quality of life: A pre/post cohort study with long-term follow-up in a Low- and Middle-Income Country. Burns, 2021, 47, 1285-1294.	1.1	11
13	Validity of thermography for measuring burn wound healing potential. Wound Repair and Regeneration, 2020, 28, 347-354.	1.5	28
14	Toward clinical elastography of dermal tissues: A medical device to probe skin's elasticity through suction, with subsurface imaging via optical coherence tomography. Review of Scientific Instruments, 2020, 91, 074101.	0.6	4
15	Labelâ€free stimulated Raman scattering imaging reveals silicone breast implant material in tissue. Journal of Biophotonics, 2020, 13, e201960197.	1.1	13
16	A systematic review on the quality of measurement techniques for the assessment of burn wound depth or healing potential. Burns, 2019, 45, 261-281.	1.1	46
17	Homocysteine-induced inverse expression of tissue factor and DPP4 in endothelial cells is related to NADPH oxidase activity. Physiology International, 2019, 106, 29-38.	0.8	3
18	Surgical burn care in sub-Saharan Africa: A systematic review. Burns Open, 2019, 3, 129-134.	0.2	12

#	Article	IF	CITATIONS
19	Patterns and predictors of burn scar outcome in the first 12 months after burn: The patient's perspective. Burns, 2019, 45, 1283-1290.	1.1	15
20	The prevalence and development of burn scar contractures: A prospective multicenter cohort study. Burns, 2019, 45, 783-790.	1.1	32
21	Skin bioprinting: the future of burn wound reconstruction?. Burns and Trauma, 2019, 7, 4.	2.3	84
22	Can Mathematics and Computational Modeling Help Treat Deep Tissue Injuries?. Advances in Wound Care, 2019, 8, 703-714.	2.6	1
23	Design and fabrication of a hybrid alginate hydrogel/poly(εâ€caprolactone) mold for auricular cartilage reconstruction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1711-1721.	1.6	38
24	Application of hydrosurgery for burn wound debridement: An 8-year cohort analysis. Burns, 2019, 45, 88-96.	1.1	21
25	Systematic Review on the Content of Outcome Measurement Instruments on Scar Quality. Plastic and Reconstructive Surgery - Global Open, 2019, 7, e2424.	0.3	22
26	Structural and Mechanical Comparison of Human Ear, Alar, and Septal Cartilage. Plastic and Reconstructive Surgery - Global Open, 2018, 6, e1610.	0.3	39
27	The pedicled internal pudendal artery perforator (PIPAP) flap for ischial pressure sore reconstruction: Technique and long-term outcome of a cohort study. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2018, 71, 889-894.	0.5	18
28	Three-dimensional imaging is a novel and reliable technique to measure total body surface area. Burns, 2018, 44, 816-822.	1.1	8
29	ISBI Practice Guidelines for Burn Care, Part 2. Burns, 2018, 44, 1617-1706.	1.1	60
30	3D printing of patient-specific neck splints for the treatment of post-burn neck contractures. Burns and Trauma, 2018, 6, 15.	2.3	8
31	Long-term scar quality after hydrosurgical versus conventional debridement of deep dermal burns (HyCon trial): study protocol for a randomized controlled trial. Trials, 2018, 19, 239.	0.7	11
32	A mathematical model for the simulation of the formation and the subsequent regression of hypertrophic scar tissue after dermal wounding. Biomechanics and Modeling in Mechanobiology, 2017, 16, 15-32.	1.4	29
33	A case report on a burned ear: Elastic memory of cartilage following temporary burial in a skin pocket. Burns, 2017, 43, e33-e35.	1.1	1
34	Perforator-based flaps for the treatment of burn scar contractures: a review. Burns and Trauma, 2017, 5, 5.	2.3	11
35	Autologous fat grafting; it almost seems too good to be true. Burns, 2017, 43, 690-691.	1.1	0
36	The role of complement in the acute phase response after burns. Burns, 2017, 43, 1390-1399.	1.1	29

3

#	Article	IF	CITATIONS
37	The official update of the POSAS: An invitation to share experiences to improve the POSAS in â€~Project POSAS 3.0'. Burns, 2017, 43, 893-894.	1.1	6
38	Sustainable effectiveness of singleâ€treatment autologous fat grafting in adherent scars. Wound Repair and Regeneration, 2017, 25, 316-319.	1.5	11
39	Noninvasive Measurement of Ear Cartilage Elasticity on the Cellular Level. Plastic and Reconstructive Surgery - Global Open, 2017, 5, e1147.	0.3	10
40	The FLIR ONE thermal imager for the assessment of burn wounds: Reliability and validity study. Burns, 2017, 43, 1516-1523.	1.1	44
41	The Local and Systemic Inflammatory Response in a Pig Burn Wound Model With a Pivotal Role for Complement. Journal of Burn Care and Research, 2017, 38, e796-e806.	0.2	18
42	Effectiveness of Autologous Fat Grafting in Adherent Scars: Results Obtained by a Comprehensive Scar Evaluation Protocol. Plastic and Reconstructive Surgery, 2017, 139, 212-219.	0.7	45
43	Perforator-Based Interposition Flaps Perform Better Than Full-Thickness Grafts for the Release of Burn Scar Contractures. Plastic and Reconstructive Surgery, 2017, 139, 501e-509e.	0.7	20
44	Indications and Predictors for Reconstructive Surgery After Hand Burns. Journal of Hand Surgery, 2017, 42, 351-358.	0.7	11
45	Assessing blood flow, microvasculature, erythema and redness in hypertrophic scars: A cross sectional study showing different features that require precise definitions. Burns, 2017, 43, 1044-1050.	1.1	10
46	Predictive validity of short term scar quality on final burn scar outcome using the Patient and Observer Scar Assessment Scale in patients with minor to moderate burn severity. Burns, 2017, 43, 715-723.	1.1	37
47	MRI and Additive Manufacturing of Nasal Alar Constructs for Patient-specific Reconstruction. Scientific Reports, 2017, 7, 10021.	1.6	18
48	Neutrophil extracellular traps coincide with a proâ€coagulant status of microcirculatory endothelium in burn wounds. Wound Repair and Regeneration, 2017, 25, 609-617.	1.5	25
49	Reply: Effectiveness of Autologous Fat Grafting in Adherent Scars: Results Obtained by a Comprehensive Scar Evaluation Protocol. Plastic and Reconstructive Surgery, 2017, 139, 1217e-1218e.	0.7	0
50	Reply. Plastic and Reconstructive Surgery, 2017, 140, 356e-357e.	0.7	0
51	A mathematical model for the simulation of the contraction of burns. Journal of Mathematical Biology, 2017, 75, 1-31.	0.8	8
52	A biomechanical mathematical model for the collagen bundle distribution-dependent contraction and subsequent retraction of healing dermal wounds. Biomechanics and Modeling in Mechanobiology, 2017, 16, 345-361.	1.4	11
53	In vivo polarization-sensitive optical coherence tomography of human burn scars: birefringence quantification and correspondence with histologically determined collagen density. Journal of Biomedical Optics, 2017, 22, 1.	1.4	18
54	Comment on "A tribute to Cicero Parker Meek― Burns 2014; 41: 1660–1663. Burns, 2016, 42, 708-709.	1.1	1

#	Article	IF	CITATIONS
55	Advances in Bioprinting Technologies for Craniofacial Reconstruction. Trends in Biotechnology, 2016, 34, 700-710.	4.9	80
56	Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage. Tissue Engineering - Part C: Methods, 2016, 22, 573-584.	1.1	51
57	Return to work after specialised burn care: A two-year prospective follow-up study of the prevalence, predictors and related costs. Injury, 2016, 47, 1975-1982.	0.7	27
58	570 Skipping to improve scar management: Modulation of TGF-Î ² signalling in hypertrophic scars via exon skipping. Journal of Investigative Dermatology, 2016, 136, S258.	0.3	0
59	Treatment of the benign inverted nipple: A systematic review and recommendations for future therapy. Breast, 2016, 29, 82-89.	0.9	17
60	ISBI Practice Guidelines for Burn Care. Burns, 2016, 42, 953-1021.	1.1	244
61	Analyzing contraction of full thickness skin grafts in time: Choosing the donor site does matter. Burns, 2016, 42, 1471-1476.	1.1	14
62	Outcome of Burns Treated with Autologous Cultured Proliferating Epidermal Cells: A Prospective Randomized Multicenter Intrapatient Comparative Trial. Cell Transplantation, 2016, 25, 437-448.	1.2	42
63	The burned ear; possibilities and challenges in framework reconstruction and coverage. Burns, 2016, 42, 1387-1395.	1.1	19
64	Threeâ€dimensional imaging: a novel, valid, and reliable technique for measuring wound surface area. Skin Research and Technology, 2016, 22, 443-450.	0.8	9
65	Insights into the use of thermography to assess burn wound healing potential: a reliable and valid technique when compared to laser Doppler imaging. Journal of Biomedical Optics, 2016, 21, 1.	1.4	43
66	Tissue engineering in burn scar reconstruction. Burns and Trauma, 2015, 3, 18.	2.3	29
67	Reply. Plastic and Reconstructive Surgery, 2015, 136, 395e-397e.	0.7	2
68	A Systematic Review on Burn Scar Contracture Treatment. Journal of Burn Care and Research, 2015, 36, e153-e161.	0.2	47
69	Intralesional Cryotherapy for Treatment of Keloid Scars. Plastic and Reconstructive Surgery, 2015, 135, 580-589.	0.7	43
70	Reply. Plastic and Reconstructive Surgery, 2015, 136, 399e-400e.	0.7	2
71	Reply to: Perforator detection with a hand-held Doppler device: Importance of the learning curve. Burns, 2015, 41, 198.	1.1	3
72	Mortality and causes of death of Dutch burn patients during the period 2006–2011. Burns, 2015, 41, 235-240.	1.1	45

#	Article	IF	CITATIONS
73	In a clinimetric analysis, 3D stereophotogrammetry was found to be reliable and valid for measuring scar volume in clinical research. Journal of Clinical Epidemiology, 2015, 68, 782-787.	2.4	24
74	Developing a parametric ear model for auricular reconstruction: A new step towards patient-specific implants. Journal of Cranio-Maxillo-Facial Surgery, 2015, 43, 390-395.	0.7	41
75	The hand held Doppler device for the detection of perforators in reconstructive surgery: What you hear is not always what you get. Burns, 2014, 40, 1702-1706.	1.1	39
76	Cost study of dermal substitutes and topical negative pressure in the surgical treatment of burns. Burns, 2014, 40, 388-396.	1.1	17
77	Differential item functioning in the Observer Scale of the POSAS for different scar types. Quality of Life Research, 2014, 23, 2037-2045.	1.5	26
78	Skin stretching for primary closure of acute burn wounds. Burns, 2014, 40, 1727-1737.	1.1	13
79	Reconstructive surgery after burns: A 10-year follow-up study. Burns, 2014, 40, 1544-1551.	1.1	39
80	Response to Letter to the Editor "Static splinting in burns― Burns, 2013, 39, 191-192.	1.1	0
81	Response to Letter to the Editor: "Support for burn splint research― Burns, 2013, 39, 541.	1.1	0
82	Objective Color Measurements. Journal of Burn Care and Research, 2013, 34, e187-e194.	0.2	70
83	Dermal substitution in burns: Invited commentary on "The roles of topical negative pressure in deep burn wounds treated by dermal substitution― Wound Repair and Regeneration, 2013, 21, 905-906.	1.5	Ο
84	Three-Dimensional Digital Stereophotogrammetry. Plastic and Reconstructive Surgery, 2013, 132, 204-211.	0.7	30
85	A Clinimetric Overview of Scar Assessment Scales. Journal of Burn Care and Research, 2012, 33, e79-e87.	0.2	71
86	The Modified Patient and Observer Scar Assessment Scale. Plastic and Reconstructive Surgery, 2012, 129, 172e-174e.	0.7	9
87	Outcome after burns: An observational study on burn scar maturation and predictors for severe scarring. Wound Repair and Regeneration, 2012, 20, 676-687.	1.5	109
88	Adaptation of the dermal collagen structure of human skin and scar tissue in response to stretch: An experimental study. Wound Repair and Regeneration, 2012, 20, 658-666.	1.5	50
89	A review on static splinting therapy to prevent burn scar contracture: Do clinical and experimental data warrant its clinical application?. Burns, 2012, 38, 19-25.	1.1	57
90	Digital image analysis versus clinical assessment of wound epithelialization: A validation study. Burns, 2012, 38, 501-505.	1.1	36

#	Article	IF	CITATIONS
91	Clinical effectiveness of dermal substitution in burns by topical negative pressure: A multicenter randomized controlled trial. Wound Repair and Regeneration, 2012, 20, 797-805.	1.5	59
92	Assessment of Scar Quality after Cleft Lip Closure. Cleft Palate-Craniofacial Journal, 2012, 49, 171-176.	0.5	15
93	On the surgical treatment of hypertrophic scars: a comprehensive guideline for the surgical treatment of hypertrophic scars. European Surgery - Acta Chirurgica Austriaca, 2012, 44, 79-84.	0.3	1
94	Collagen bundle morphometry in skin and scar tissue: a novel distance mapping method provides superior measurements compared to Fourier analysis. Journal of Microscopy, 2012, 245, 82-89.	0.8	36
95	Rasch analysis of the Patient and Observer Scar Assessment Scale (POSAS) in burn scars. Quality of Life Research, 2012, 21, 13-23.	1.5	117
96	Reliability of subjective wound assessment. Burns, 2011, 37, 566-571.	1.1	31
97	Sustainable effect of skin stretching for burn scar excision: Long-term results of a multicenter randomized controlled trial. Burns, 2011, 37, 1222-1228.	1.1	28
98	Perforator-Based Interposition Flaps for Sustainable Scar Contracture Release: A Versatile, Practical, and Safe Technique. Plastic and Reconstructive Surgery, 2011, 127, 1524-1532.	0.7	12
99	Efficacy of Skin Stretching for Burn Scar Excision: A Multicenter Randomized Controlled Trial. Plastic and Reconstructive Surgery, 2011, 127, 1958-1966.	0.7	13
100	Reply: Topical Silicone Gel versus Placebo in Promoting the Maturation of Burn Scars: A Randomized Controlled Trial—The Pivotal Role of Statistics. Plastic and Reconstructive Surgery, 2011, 128, 607.	0.7	0
101	Objective Scar Assessment Tools: A Clinimetric Appraisal. Plastic and Reconstructive Surgery, 2011, 127, 1561-1570.	0.7	86
102	Topical Silicone Gel versus Placebo in Promoting the Maturation of Burn Scars: A Randomized Controlled Trial. Plastic and Reconstructive Surgery, 2010, 126, 524-531.	0.7	95
103	Dermal Substitution in Acute Burns and Reconstructive Surgery: A 12-Year Follow-Up. Plastic and Reconstructive Surgery, 2010, 125, 1450-1459.	0.7	110
104	A reliable, non-invasive measurement tool for anisotropy in normal skin and scar tissue. Skin Research and Technology, 2010, 16, 325-31.	0.8	24
105	The treatment of hand burns: Timing of debridement and grafting. Burns, 2010, 36, 438.	1.1	2
106	Collagen crossâ€linking by adiposeâ€derived mesenchymal stromal cells and scarâ€derived mesenchymal cells: Are mesenchymal stromal cells involved in scar formation?. Wound Repair and Regeneration, 2009, 17, 548-558.	1.5	42
107	Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis. Wound Repair and Regeneration, 2009, 17, 649-656.	1.5	237
108	Potential cellular and molecular causes of hypertrophic scar formation. Burns, 2009, 35, 15-29.	1.1	305

#	Article	IF	CITATIONS
109	Prevention and curative management of hypertrophic scar formation. Burns, 2009, 35, 463-475.	1.1	224
110	Draining after breast reduction: a randomised controlled inter-patient study. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2009, 62, 865-868.	0.5	56
111	The Results of Surgical Excision and Adjuvant Irradiation for Therapy-Resistant Keloids: A Prospective Clinical Outcome Study. Plastic and Reconstructive Surgery, 2007, 119, 2248-2254.	0.7	89
112	The timing of surgery for deep burns of the hands: Early versus delayed surgery. Burns, 2007, 33, 807.	1.1	3
113	Reliable and Feasible Evaluation of Linear Scars by the Patient and Observer Scar Assessment Scale. Plastic and Reconstructive Surgery, 2005, 116, 514-522.	0.7	413
114	Skin elasticity meter or subjective evaluation in scars: a reliability assessment. Burns, 2004, 30, 109-114.	1.1	161
115	Colour evaluation in scars: tristimulus colorimeter, narrow-band simple reflectance meter or subjective evaluation?. Burns, 2004, 30, 103-107.	1.1	132
116	The Patient and Observer Scar Assessment Scale: A Reliable and Feasible Tool for Scar Evaluation. Plastic and Reconstructive Surgery, 2004, 113, 1960-1965.	0.7	980
117	Collagen morphology in human skin and scar tissue: no adaptations in response to mechanical loading at joints. Burns, 2003, 29, 423-431.	1.1	145
118	Scar Assessment Tools: Implications for Current Research. Plastic and Reconstructive Surgery, 2002, 109, 1108-1122.	0.7	128
119	Long-term results of a clinical trial on dermal substitution Burns, 2002, 28, 151-160.	1.1	45
120	The suitability of cells from different tissues for use in tissue-engineered skin substitutes. Archives of Dermatological Research, 2002, 294, 135-142.	1.1	74
121	Morphometry of dermal collagen orientation by Fourier analysis is superior to multi-observer assessment. Journal of Pathology, 2002, 198, 284-291.	2.1	91
122	Nerve outgrowth and neuropeptide expression during the remodeling of human burn wound scars. Burns, 2001, 27, 717-722.	1.1	49
123	Dermal Substitution in Acute Burns and Reconstructive Surgery: A Subjective and Objective Long-Term Follow-Up. Plastic and Reconstructive Surgery, 2001, 108, 1938-1946.	0.7	116
124	Graft Survival and Effectiveness of Dermal Substitution in Burns and Reconstructive Surgery in a One-Stage Grafting Model. Plastic and Reconstructive Surgery, 2000, 106, 615-623.	0.7	116
125	Dermal Organization in Scleroderma: The Fast Fourier Transform and the Laser Scatter Method Objectify Fibrosis in Nonlesional as well as Lesional Skin. Laboratory Investigation, 2000, 80, 1281-1289. 	1.7	65
126	Epidermal participation in post-burn hypertrophic scar development. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 1999, 434, 221-226.	1.4	32

#	Article	IF	CITATIONS
127	The prognostic factors regarding long-term functional outcome of full-thickness hand burns. Burns, 1999, 25, 709-714.	1.1	72
128	Correspondence. Burns, 1998, 24, 687.	1.1	4