Xi-Zhi Niu

List of Publications by Citations

Source: https://exaly.com/author-pdf/8838063/xi-zhi-niu-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

409 11 20 22 h-index g-index citations papers 3.98 23 7.9 534 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
22	Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation. <i>Water Research</i> , 2013 , 47, 4869-79	12.5	81
21	Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation. <i>Water Research</i> , 2016 , 106, 214-222	12.5	71
20	Photobleaching-induced changes in photosensitizing properties of dissolved organic matter. <i>Water Research</i> , 2014 , 66, 140-148	12.5	39
19	Photodegradation of sulfathiazole under simulated sunlight: Kinetics, photo-induced structural rearrangement, and antimicrobial activities of photoproducts. <i>Water Research</i> , 2017 , 124, 576-583	12.5	31
18	Sunlight-induced inactivation of human Wa and porcine OSU rotaviruses in the presence of exogenous photosensitizers. <i>Environmental Science & Environmental Science & Environm</i>	10.3	29
17	Comparative Study for Interactions of Sulfate Radical and Hydroxyl Radical with Phenol in the Presence of Nitrite. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	28
16	Interactions of phosphate solubilising microorganisms with natural rare-earth phosphate minerals: a study utilizing Western Australian monazite. <i>Bioprocess and Biosystems Engineering</i> , 2017 , 40, 929-942	<u>3</u> .7	25
15	Characterisation of dissolved organic matter using Fourier-transform ion cyclotron resonance mass spectrometry: Type-specific unique signatures and implications for reactivity. <i>Science of the Total Environment</i> , 2018 , 644, 68-76	10.2	20
14	Excited Triplet State Interactions of Fluoroquinolone Norfloxacin with Natural Organic Matter: A Laser Spectroscopy Study. <i>Environmental Science & Environmental Science & En</i>	10.3	17
13	Photochemical production of hydroxyl radical from algal organic matter. Water Research, 2019, 161, 11	- 116 .5	13
12	Syntrophic effect of indigenous and inoculated microorganisms in the leaching of rare earth elements from Western Australian monazite. <i>Research in Microbiology</i> , 2018 , 169, 558-568	4	12
11	Survival of antibiotic resistant bacteria following artificial solar radiation of secondary wastewater effluent. <i>Science of the Total Environment</i> , 2018 , 626, 1005-1011	10.2	11
10	The characteristics of organic matter influence its interfacial interactions with MnO and catalytic oxidation processes. <i>Chemosphere</i> , 2018 , 209, 950-959	8.4	11
9	Sunlight-induced phototransformation of transphilic and hydrophobic fractions of Suwannee River dissolved organic matter. <i>Science of the Total Environment</i> , 2019 , 694, 133737	10.2	6
8	Incorporation of Indigenous Microorganisms Increases Leaching Rates of Rare Earth Elements from Western Australian Monazite. <i>Solid State Phenomena</i> , 2017 , 262, 294-298	0.4	5
7	Photochemical fate of sulfonium photoacid generator cations under photolithography relevant UV irradiation. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2021 , 416, 113324	4.7	4
6	Bioconcentration potential and microbial toxicity of onium cations in photoacid generators. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 8915-8921	5.1	4

LIST OF PUBLICATIONS

5	Models to predict sunlight-induced photodegradation rates of contaminants in wastewater stabilisation ponds and clarifiers. <i>Water Science and Engineering</i> , 2019 , 12, 293-297	4	2
4	The effect of strong magnetic field on the microstructure of pure diopside and diopside doped with Fe 3+ or Mn 2+. <i>Journal of Alloys and Compounds</i> , 2016 , 657, 152-156	5.7	O
3	Analysis of hydrophilic per- and polyfluorinated sulfonates including trifluoromethanesulfonate using solid phase extraction and mixed-mode liquid chromatography-tandem mass spectrometry <i>Journal of Chromatography A</i> , 2022 , 1664, 462817	4.5	O
2	The relationship of CCL4, BCL2A1, and NFKBIA genes with premature aging in women of Yin deficiency constitution. <i>Experimental Gerontology</i> , 2021 , 149, 111316	4.5	O
1	Fate of bis-(4-tert-butyl phenyl)-iodonium under photolithography relevant irradiation and the environmental risk properties of the formed photoproducts <i>Environmental Science and Pollution Research</i> , 2022 , 29, 25988	5.1	