Elsa Brandão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8837695/publications.pdf

Version: 2024-02-01

566801 839053 18 769 15 18 citations h-index g-index papers 18 18 18 801 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sensorial properties of red wine polyphenols: Astringency and bitterness. Critical Reviews in Food Science and Nutrition, 2017, 57, 937-948.	5.4	134
2	Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules, 2020, 25, 2590.	1.7	112
3	The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach. Carbohydrate Polymers, 2017, 177, 77-85.	5.1	77
4	Human Bitter Taste Receptors Are Activated by Different Classes of Polyphenols. Journal of Agricultural and Food Chemistry, 2018, 66, 8814-8823.	2.4	65
5	Impact of grape pectic polysaccharides on anthocyanins thermostability. Carbohydrate Polymers, 2020, 239, 116240.	5.1	45
6	Study of human salivary proline-rich proteins interaction with food tannins. Food Chemistry, 2018, 243, 175-185.	4.2	43
7	In Vivo Interactions between Procyanidins and Human Saliva Proteins: Effect of Repeated Exposures to Procyanidins Solution. Journal of Agricultural and Food Chemistry, 2014, 62, 9562-9568.	2.4	39
8	Molecular study of mucin-procyanidin interaction by fluorescence quenching and Saturation Transfer Difference (STD)-NMR. Food Chemistry, 2017, 228, 427-434.	4.2	37
9	Molecular Interaction Between Salivary Proteins and Food Tannins. Journal of Agricultural and Food Chemistry, 2017, 65, 6415-6424.	2.4	36
10	Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes. Journal of Agricultural and Food Chemistry, 2016, 64, 7823-7828.	2.4	31
11	Human saliva protein profile: Influence of food ingestion. Food Research International, 2014, 64, 508-513.	2.9	30
12	Effect of malvidin-3-glucoside and epicatechin interaction on their ability to interact with salivary proline-rich proteins. Food Chemistry, 2019, 276, 33-42.	4.2	26
13	The effect of pectic polysaccharides from grape skins on salivary protein – procyanidin interactions. Carbohydrate Polymers, 2020, 236, 116044.	5.1	25
14	Interaction between Ellagitannins and Salivary Proline-Rich Proteins. Journal of Agricultural and Food Chemistry, 2019, 67, 9579-9590.	2.4	24
15	Inhibition Mechanisms of Wine Polysaccharides on Salivary Protein Precipitation. Journal of Agricultural and Food Chemistry, 2020, 68, 2955-2963.	2.4	21
16	Development of a New Cell-Based Oral Model To Study the Interaction of Oral Constituents with Food Polyphenols. Journal of Agricultural and Food Chemistry, 2019, 67, 12833-12843.	2.4	17
17	Interactions between polyphenol oxidation products and salivary proteins: Specific affinity of CQA dehydrodimers with cystatins and P-B peptide. Food Chemistry, 2021, 343, 128496.	4.2	5
18	Interaction between salivary proteins and cork phenolic compounds able to migrate to wine model solutions. Food Chemistry, 2022, 367, 130607.	4.2	2