Lanfranco Corazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/88375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human CD1-restricted T cell recognition of lipids from pollens. Journal of Experimental Medicine, 2005, 202, 295-308.	4.2	212
2	Recognition of pollen-derived phosphatidyl-ethanolamine by human CD1d-restricted γδT cells. Journal of Allergy and Clinical Immunology, 2006, 117, 1178-1184.	1.5	83
3	Effects of flaxseed dietary supplementation on sperm quality and on lipid composition of sperm subfractions and prostatic granules in rabbit. Theriogenology, 2010, 73, 629-637.	0.9	69
4	Rat Brain Cortex Mitochondria Release Group II Secretory Phospholipase A2 under Reduced Membrane Potential. Journal of Biological Chemistry, 2004, 279, 37860-37869.	1.6	38
5	Enteric glial cells are susceptible to Clostridium difficile toxin B. Cellular and Molecular Life Sciences, 2017, 74, 1527-1551.	2.4	37
6	Exogenous Phospholipids Specifically Affect Transmembrane Potential of Brain Mitochondria and Cytochrome c Release. Journal of Biological Chemistry, 2002, 277, 12075-12081.	1.6	35
7	Phosphatidylserine translocation into brain mitochondria: involvement of a fusogenic protein associated with mitochondrial membranes. , 1997, 175, 71-80.		31
8	In vitro antimycotic activity of a Williopsis saturnus killer protein against food spoilage yeasts. International Journal of Food Microbiology, 2009, 131, 178-182.	2.1	30
9	Acetyl-l-carnitine influences the fluidity of brain microsomes and of liposomes made of rat brain microsomal lipid extracts. Neurochemical Research, 1992, 17, 671-675.	1.6	29
10	Direct and Irreversible Inhibition of Cyclooxygenase-1 by Nitroaspirin (NCX 4016). Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1331-1337.	1.3	29
11	Binding and Release of Cytochrome c in Brain Mitochondria Is Influenced by Membrane Potential and Hydrophobic Interactions with Cardiolipin. Journal of Membrane Biology, 2004, 198, 43-53.	1.0	28
12	BIOSYNTHESIS OF RAT BRAIN PHOSPHATIDYLCHOLINES FROM INTRACEREBRALLY INJECTED CHOLINE. Journal of Neurochemistry, 1976, 27, 203-210.	2.1	27
13	Loss of cardiolipin in palmitate-treated GL15 glioblastoma cells favors cytochrome c release from mitochondria leading to apoptosis. Journal of Neurochemistry, 2008, 105, 1019-1031.	2.1	27
14	Enteric glial cells counteract Clostridium difficile Toxin B through a NADPH oxidase/ROS/JNK/caspase-3 axis, without involving mitochondrial pathways. Scientific Reports, 2017, 7, 45569.	1.6	26
15	The Fusion of Liposomes to Rat Brain Microsomal Membranes Regulates Phosphatidylserine Synthesis. Journal of Neurochemistry, 1991, 56, 207-212.	2.1	25
16	Import of phosphatidylethanolamine for the assembly of rat brain mitochondrial membranes. Journal of Membrane Biology, 1995, 148, 169-76.	1.0	24
17	The energy blockers bromopyruvate and lonidamine lead GL15 glioblastoma cells to death by different p53-dependent routes. Scientific Reports, 2015, 5, 14343.	1.6	24
18	Mitochondrial dysfunction and effect of antiglycolytic bromopyruvic acid in GL15 glioblastoma cells. Journal of Bioenergetics and Biomembranes, 2011, 43, 507-518.	1.0	23

#	Article	IF	CITATIONS
19	Characterization of the in vitro antimycotic activity of a novel killer protein fromWilliopsis saturnusDBVPG 4561 against emerging pathogenic yeasts. FEMS Microbiology Letters, 2004, 238, 359-365.	0.7	22
20	A novel killer protein from Pichia kluyveri isolated from an Algerian soil: purification and characterization of its in vitro activity against food and beverage spoilage yeasts. Antonie Van Leeuwenhoek, 2015, 107, 961-970.	0.7	22
21	The biology of cypress allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2002, 57, 959-960.	2.7	19
22	Characterization of the in vitro antimycotic activity of a novel killer protein from DBVPG 4561 against emerging pathogenic yeasts. FEMS Microbiology Letters, 2004, 238, 359-365.	0.7	19
23	3-Bromopyruvate treatment induces alterations of metabolic and stress-related pathways in glioblastoma cells. Journal of Proteomics, 2017, 152, 329-338.	1.2	19
24	Bromopyruvate mediates autophagy and cardiolipin degradation to monolyso-cardiolipin in GL15 glioblastoma cells. Journal of Bioenergetics and Biomembranes, 2012, 44, 51-60.	1.0	18
25	Sidedness of Phosphatidylcholine-Synthesizing Enzymes in Rat Brain Microsomal Vesicles. Journal of Neurochemistry, 1985, 44, 38-41.	2.1	16
26	Ethanolamine Base-Exchange Reaction in Rat Brain Microsomal Subfractions. Journal of Neurochemistry, 1986, 46, 202-207.	2.1	15
27	Respiratory State and Phosphatidylserine Import in Brain Mitochondria In Vitro. Journal of Membrane Biology, 2000, 173, 97-105.	1.0	15
28	The energy blockers 3-bromopyruvate and lonidamine: effects on bioenergetics of brain mitochondria. Journal of Bioenergetics and Biomembranes, 2014, 46, 389-394.	1.0	15
29	Activity, Expression, and Substrate Preference of the Δ ⁶ -Desaturase in Slow- or Fast-Growing Rabbit Genotypes. Journal of Agricultural and Food Chemistry, 2016, 64, 792-800.	2.4	15
30	Cytochrome c redox state influences the binding and release of cytochrome c in model membranes and in brain mitochondria. Molecular and Cellular Biochemistry, 2010, 341, 149-157.	1.4	14
31	Compartmentation of membrane phosphatidylethanolamine formed by base-exchange reaction in rat brain microsomes. Biochimica Et Biophysica Acta - Biomembranes, 1983, 730, 104-110.	1.4	13
32	Transport of Phosphatidylserine from Microsomes to the Inner Mitochondrial Membrane in Brain Tissue. Journal of Neurochemistry, 1993, 60, 50-56.	2.1	13
33	A fusogenic protein from rat brain microsomal membranes: Partial purification and reconstitution into liposomes. Journal of Membrane Biology, 1994, 142, 35-42.	1.0	12
34	Palmitate lipotoxicity in enteric glial cells: Lipid remodeling and mitochondrial ROS are responsible for cyt c release outside mitochondria. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 895-908.	1.2	12
35	The efficacy of the anticancer 3-bromopyruvate is potentiated by antimycin and menadione by unbalancing mitochondrial ROS production and disposal in U118 glioblastoma cells. Heliyon, 2020, 6, e05741.	1.4	11
36	Biosynthesis of rat brain phosphatidylethanolamines from intracerebrally injected ethanolamine. Brain Research, 1977, 124, 317-329.	1.1	9

LANFRANCO CORAZZI

#	Article	IF	CITATIONS
37	Effect of various drugs producing convulsive seizures on rat brain glycerolipid metabolism. Neurochemical Research, 1985, 10, 879-885.	1.6	9
38	Fusion of liposomes and rat brain microsomes examined by two assays. Journal of Membrane Biology, 1989, 112, 123-129.	1.0	9
39	H2O2 disposal in cardiolipin-enriched brain mitochondria is due to increased cytochrome c peroxidase activity. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 203-208.	1.2	9
40	Tm7sf2 gene promotes adipocyte differentiation of mouse embryonic fibroblasts and improves insulin sensitivity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118897.	1.9	8
41	Cerebellar metabolism of phosphatidylcholine and its hydrosoluble precursors during bicuculline-induced convulsive seizures. Neurochemical Research, 1986, 11, 401-406.	1.6	7
42	Protein expression changes induced in murine peritoneal macrophages by Group B Streptococcus. Proteomics, 2010, 10, 2099-2112.	1.3	7
43	Glycerol incorporation into brain lipids in rat pups born to ethanol-intoxicated dams. Neurochemical Research, 1987, 12, 469-473.	1.6	6
44	Incorporation of Glycerol and Ethanolamine into Glycerophospholipid in Rat Brain Areas During Bicuculline-Induced Convulsive Seizures. Journal of Neurochemistry, 1988, 50, 7-10.	2.1	6
45	Effect of pyridoxal 5'-phosphate and valproic acid on phospholipid synthesis in neuroblastoma na. Biochemical Pharmacology, 1989, 38, 3407-3413.	2.0	6
46	Microsomal Protein Mediates a pH-Dependent Fusion of Liposomes to Rat Brain Microsomes. Membrane Biochemistry, 1990, 9, 253-261.	0.6	6
47	Rat brain microsome fluidity as modified by prenatal ethanol administration. Neurochemical Research, 1993, 18, 335-338.	1.6	6
48	Adenosine A1 receptors contribute to mitochondria vulnerability to pro-oxidant stressors. Mitochondrion, 2010, 10, 369-379.	1.6	6
49	The effect of acute ethanol administration on the activity of membrane-bound enzymes of rat liver. Pharmacological Research Communications, 1980, 12, 739-749.	0.2	5
50	The reaggregation of rat brain microsomal membranes after the treatment with octyl-β-d-glucopyranoside. A study on ethanolamine base-exchange. Lipids and Lipid Metabolism, 1986, 875, 362-368.	2.6	5
51	Factors affecting the reaggregation of rat brain microsomes solubilized with octyl glucoside and their relationship with the base-exchange activity of reaggregates. Biochimica Et Biophysica Acta - Biomembranes, 1987, 903, 277-282.	1.4	5
52	A Glycoprotein from Rat Liver Endoplasmic Reticulum Promotes Both Aggregation and Fusion of Liposomes at Acidic pH. Journal of Membrane Biology, 1998, 165, 53-63.	1.0	5
53	Selective Cytochrome c Displacement by Phosphate and Ca2+ in Brain Mitochondria. Journal of Membrane Biology, 2006, 212, 199-210.	1.0	5
54	Topology of lipid-synthesizing enzymes in brain microsomes. Journal of Membrane Science, 1983, 16, 309-317.	4.1	3

LANFRANCO CORAZZI

#	Article	IF	CITATIONS
55	The effect of pyridoxal phosphate-induced convulsive seizures on rat brain phospholipid metabolism. Italian Journal of Neurological Sciences, 1984, 5, 185-188.	0.1	3
56	Cerebellar metabolism of phosphatidylethanolamine and its water-soluble precursors during bicuculline-induced convulsive seizures. Neurochemical Research, 1987, 12, 341-344.	1.6	3
57	Acidic pH generated by H+-ATPase pumps triggers the activity of a fusogenic protein associated with rat liver endoplasmic reticulum. FEBS Journal, 2001, 268, 2020-2027.	0.2	3
58	A Study on the Possible Occurrence of Base-Exchange Reactions in Vivo. Advances in Experimental Medicine and Biology, 1978, 101, 319-325.	0.8	3
59	The effect of membrane lipid molecular species on rat brain base-exchange reactions: an appraisal of phosphatidylserine and of polyunsaturated phosphatidylcholine. Il Farmaco, 1990, 45, 1067-73.	0.9	3
60	The fate of phosphatidylethanolamine formed by decarboxylation in rat brain mitochondria. IUBMB Life, 1993, 29, 821-9.	0.1	3
61	Effect of subconvulsive doses of bicuculline on the incorporation of radioactive precursors into glycerolipids in rat brain areas. Italian Journal of Neurological Sciences, 1989, 10, 329-336.	0.1	2
62	Impairment of brain mitochondrial functions by β-hemolytic Group B Streptococcus. Effect of cardiolipin and phosphatidylcholine. Journal of Bioenergetics and Biomembranes, 2013, 45, 519-529.	1.0	2
63	Lipids of Brain Mitochondria. , 2009, , 199-221.		2
64	Compartmentation of newly synthesized phosphatidylethanolamine in rat brain microsomes. Journal of Membrane Biology, 1986, 90, 29-35.	1.0	1
65	The incorporation of intracranially injected glycerol into brain glycerides of young rats born to normal and alcohol-fed mothers. Neurochemical Research, 1988, 13, 817-821.	1.6	1
66	Regulation of liver base-exchange activity by acidic phospholipids. Bioscience Reports, 1991, 11, 231-236.	1.1	1
67	Valproic acid and bicuculline affect the formation of glycerolipid in rat brain. Neurochemistry International, 1989, 15, 397-402.	1.9	0
68	Use of NAO to study the content and organization of cardiolipin (CL) in membranes. FASEB Journal, 2006, 20, A952.	0.2	0
69	Treatment of Rat Brain Microsomal Vesicles with Octyl-β-D-Glucopyranoside: A Study on Ethanolamine Base-Exchange after Reaggregation. , 1986, , 77-82.		0