List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8836898/publications.pdf

Version: 2024-02-01

	9756	9311
20,979	73	143
citations	h-index	g-index
177	177	23276
docs citations	times ranked	citing authors
	citations 177	20,979 73 citations h-index 177 177

HONG YANG

#	Article	IF	CITATIONS
1	Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2005, 2, 8.	2.8	1,678
2	Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today, 2009, 4, 143-164.	6.2	1,001
3	Platinum-Based Oxygen Reduction Electrocatalysts. Accounts of Chemical Research, 2013, 46, 1848-1857.	7.6	900
4	Superparamagnetic Colloids: Controlled Synthesis and Niche Applications. Advanced Materials, 2007, 19, 33-60.	11.1	884
5	Synthesis of oriented films of mesoporous silica on mica. Nature, 1996, 379, 703-705.	13.7	705
6	Morphogenesis of shapes and surface patterns in mesoporous silica. Nature, 1997, 386, 692-695.	13.7	675
7	Synthesis and Oxygen Reduction Electrocatalytic Property of Pt-on-Pd Bimetallic Heteronanostructures. Journal of the American Chemical Society, 2009, 131, 7542-7543.	6.6	591
8	Free-standing and oriented mesoporous silica films grown at the air–water interface. Nature, 1996, 381, 589-592.	13.7	566
9	Truncated Octahedral Pt ₃ Ni Oxygen Reduction Reaction Electrocatalysts. Journal of the American Chemical Society, 2010, 132, 4984-4985.	6.6	500
10	Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chemical Society Reviews, 2013, 42, 2880-2904.	18.7	499
11	Icosahedral Platinum Alloy Nanocrystals with Enhanced Electrocatalytic Activities. Journal of the American Chemical Society, 2012, 134, 11880-11883.	6.6	496
12	Ca ₂ Mn ₂ O ₅ as Oxygen-Deficient Perovskite Electrocatalyst for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2014, 136, 14646-14649.	6.6	445
13	Shape and Composition-Controlled Platinum Alloy Nanocrystals Using Carbon Monoxide as Reducing Agent. Nano Letters, 2011, 11, 798-802.	4.5	437
14	Platinum-Maghemite Coreâ^'Shell Nanoparticles Using a Sequential Synthesis. Nano Letters, 2003, 3, 261-264.	4.5	400
15	High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media. Journal of the American Chemical Society, 2017, 139, 12076-12083.	6.6	331
16	Synthesis of CoPt Nanorods in Ionic Liquids. Journal of the American Chemical Society, 2005, 127, 5316-5317.	6.6	311
17	"Pulling―Nanoparticles into Water:  Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of α-Cyclodextrin. Nano Letters, 2003, 3, 1555-1559.	4.5	279
18	Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Research, 2016, 44, D1069-D1074.	6.5	278

#	Article	IF	CITATIONS
19	Platinumâ€Based Electrocatalysts with Core–Shell Nanostructures. Angewandte Chemie - International Edition, 2011, 50, 2674-2676.	7.2	275
20	Synthesis of Platinum Multipods:Â An Induced Anisotropic Growth. Nano Letters, 2005, 5, 885-891.	4.5	272
21	Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chemical Society Reviews, 2012, 41, 8066.	18.7	258
22	Synthesis of Silver Nanoparticles in a Continuous Flow Tubular Microreactor. Nano Letters, 2004, 4, 2227-2232.	4.5	250
23	Visible-Light-Driven Selective Photocatalytic Hydrogenation of Cinnamaldehyde over Au/SiC Catalysts. Journal of the American Chemical Society, 2016, 138, 9361-9364.	6.6	241
24	Solvent-Free Atom Transfer Radical Polymerization in the Synthesis of Fe2O3@Polystyrene Coreâ^'Shell Nanoparticles. Nano Letters, 2003, 3, 789-793.	4.5	236
25	Patterned Langmuirâ^'Blodgett Films of Monodisperse Nanoparticles of Iron Oxide Using Soft Lithography. Journal of the American Chemical Society, 2003, 125, 630-631.	6.6	236
26	Synthesis of Porous Platinum Nanoparticles. Small, 2006, 2, 249-253.	5.2	234
27	Magneticâ€Fieldâ€Assisted Electrospinning of Aligned Straight and Wavy Polymeric Nanofibers. Advanced Materials, 2010, 22, 2454-2457.	11.1	214
28	Epitaxial Growth of Twinned Au–Pt Core–Shell Star-Shaped Decahedra as Highly Durable Electrocatalysts. Nano Letters, 2015, 15, 7808-7815.	4.5	195
29	Direct Synthesis of Narrowly Dispersed Silver Nanoparticles Using a Single-Source Precursor. Langmuir, 2003, 19, 10081-10085.	1.6	188
30	Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticlesElectronic supplementary information (ESI) available: XRD data of iron oxide nanoparticles, Fig. S1 and S2. See http://www.rsc.org/suppdata/jm/b3/b311610g/. Journal of Materials Chemistry, 2004, 14, 774.	6.7	181
31	Growing Pt Nanowires as a Densely Packed Array on Metal Gauze. Journal of the American Chemical Society, 2007, 129, 10634-10635.	6.6	181
32	Synthesis of mesoporous silica spheres under quiescent aqueous acidic conditions. Journal of Materials Chemistry, 1998, 8, 743-750.	6.7	175
33	Synthesis of Face-Centered Tetragonal FePt Nanoparticles and Granular Films from Pt@Fe2O3Coreâ~Shell Nanoparticles. Journal of the American Chemical Society, 2003, 125, 14559-14563.	6.6	173
34	Synthesis and Characterization of Ordered Intermetallic PtPb Nanorods. Journal of the American Chemical Society, 2007, 129, 8684-8685.	6.6	160
35	Highly Uniform Platinum Icosahedra Made by Hot Injection-Assisted GRAILS Method. Nano Letters, 2013, 13, 2870-2874.	4.5	156
36	Synthesis and Oxygen Reduction Electrocatalytic Property of Platinum Hollow and Platinum-on-Silver Nanoparticles. Chemistry of Materials, 2010, 22, 1098-1106.	3.2	149

#	Article	IF	CITATIONS
37	The Role of Defects in the Formation of Mesoporous Silica Fibers, Films, and Curved Shapes. Advanced Materials, 1998, 10, 883-887.	11.1	144
38	Nanoparticles for Catalysis. Accounts of Chemical Research, 2013, 46, 1671-1672.	7.6	144
39	Fabrication of Ordered Two-Dimensional Arrays of Micro- and Nanoparticles Using Patterned Self-Assembled Monolayers as Templates. Advanced Materials, 1999, 11, 1433-1437.	11.1	143
40	Composition-Dependent Formation of Platinum Silver Nanowires. ACS Nano, 2010, 4, 1501-1510.	7.3	141
41	Effects of Surface Chemistry on the Generation of Reactive Oxygen Species by Copper Nanoparticles. ACS Nano, 2012, 6, 2157-2164.	7.3	138
42	Roles of Twin Defects in the Formation of Platinum Multipod Nanocrystals. Journal of Physical Chemistry C, 2007, 111, 14312-14319.	1.5	136
43	Electrochemical Synthesis and Catalytic Property of Sub-10 nm Platinum Cubic Nanoboxes. Nano Letters, 2010, 10, 1492-1496.	4.5	129
44	PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Research, 2009, 2, 406-415.	5.8	128
45	Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. Journal of Cell Biology, 2010, 191, 631-644.	2.3	126
46	Three-Dimensional PtRu Nanostructures. Chemistry of Materials, 2007, 19, 36-41.	3.2	123
47	Hanoi Tower-like Multilayered Ultrathin Palladium Nanosheets. Nano Letters, 2014, 14, 7188-7194.	4.5	122
48	Fabrication of High Performance Ceramic Microstructures from a Polymeric Precursor Using Soft Lithography. Advanced Materials, 2001, 13, 54-58.	11.1	121
49	A Porous Pyrochlore Y ₂ [Ru _{1.6} Y _{0.4}]O _{7–<i>δ</i>} Electrocatalyst for Enhanced Performance towards the Oxygen Evolution Reaction in Acidic Media. Angewandte Chemie - International Edition, 2018, 57, 13877-13881.	7.2	116
50	Registered growth of mesoporous silica films on graphite. Journal of Materials Chemistry, 1997, 7, 1285-1290.	6.7	110
51	Shell mimetics. Advanced Materials, 1997, 9, 662-667.	11.1	110
52	Electrocatalytic Properties of Pt Nanowires Supported on Pt and W Gauzes. ACS Nano, 2008, 2, 2167-2173.	7.3	110
53	An Electrochemical Approach to PtAg Alloy Nanostructures Rich in Pt at the Surface. Advanced Functional Materials, 2010, 20, 3734-3741.	7.8	110
54	Preparation of Nonprecious Metal Electrocatalysts for the Reduction of Oxygen Using a Low-Temperature Sacrificial Metal. Journal of the American Chemical Society, 2020, 142, 5477-5481.	6.6	110

#	Article	IF	CITATIONS
55	Growth of Au on Pt Icosahedral Nanoparticles Revealed by Low-Dose In Situ TEM. Nano Letters, 2015, 15, 2711-2715.	4.5	106
56	Mesoporous silica with micrometer-scale designs. Advanced Materials, 1997, 9, 811-814.	11.1	97
57	Direct Oxidation of Methanol on Pt Nanostructures Supported on Electrospun Nanofibers of Anatase. Journal of Physical Chemistry C, 2008, 112, 9970-9975.	1.5	97
58	Testing Nanomaterials of Unknown Toxicity: An Example Based on Platinum Nanoparticles of Different Shapes. Advanced Materials, 2007, 19, 3124-3129.	11.1	96
59	Oleic acid as the capping agent in the synthesis of noble metal nanoparticles in imidazolium-based ionic liquids. Chemical Communications, 2006, , 2545.	2.2	95
60	Pt@Nb-TiO ₂ Catalyst Membranes Fabricated by Electrospinning and Atomic Layer Deposition. ACS Catalysis, 2014, 4, 144-151.	5.5	89
61	Photoluminescent Silicon Clusters in Oriented Hexagonal Mesoporous Silica Film. Advanced Materials, 1999, 11, 474-480.	11.1	88
62	Higher-Order Nanostructures of Two-Dimensional Palladium Nanosheets for Fast Hydrogen Sensing. Nano Letters, 2014, 14, 5953-5959.	4.5	86
63	Dissolution Kinetics of Oxidative Etching of Cubic and Icosahedral Platinum Nanoparticles Revealed by <i>in Situ</i> Liquid Transmission Electron Microscopy. ACS Nano, 2017, 11, 1696-1703.	7.3	84
64	Neighboring Pt Atom Sites in an Ultrathin FePt Nanosheet for the Efficient and Highly CO-Tolerant Oxygen Reduction Reaction. Nano Letters, 2018, 18, 5905-5912.	4.5	84
65	Morphokinetics: Growth of Mesoporous Silica Curved Shapes. Advanced Materials, 1999, 11, 52-55.	11.1	83
66	Ag–Pt alloy nanoparticles with the compositions in the miscibility gap. Journal of Solid State Chemistry, 2008, 181, 1546-1551.	1.4	83
67	Modeling of Menisci and Capillary Forces from the Millimeter to the Micrometer Size Range. Journal of Physical Chemistry B, 2001, 105, 404-412.	1.2	81
68	Synthesis of iron oxide nanoparticles using a freshly-made or recycled imidazolium-based ionic liquid. Green Chemistry, 2007, 9, 1051.	4.6	81
69	Synthesis and Catalytic Properties of Silver Nanoparticle–Linear Polyethylene Imine Colloidal Systems. Journal of Physical Chemistry C, 2012, 116, 4594-4604.	1.5	81
70	Synergistic Effect of Segregated Pd and Au Nanoparticles on Semiconducting SiC for Efficient Photocatalytic Hydrogenation of Nitroarenes. ACS Applied Materials & Interfaces, 2018, 10, 23029-23036.	4.0	79
71	Nanopillar Arrays of Glassy Carbon by Anodic Aluminum Oxide Nanoporous Templates. Nano Letters, 2003, 3, 439-442.	4.5	78
72	Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Research, 2011, 4, 72-82.	5.8	76

#	Article	IF	CITATIONS
73	Electrospun fibers as a scaffolding platform for bone tissue repair. Journal of Orthopaedic Research, 2013, 31, 1382-1389.	1.2	75
74	Porous Perovskite-Type Lanthanum Cobaltite as Electrocatalysts toward Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 10910-10917.	3.2	75
75	Free-standing mesoporous silica films; morphogenesis of channel and surface patterns. Journal of Materials Chemistry, 1997, 7, 1755-1761.	6.7	73
76	Porous Nanoparticle Membranes: Synthesis and Application as Fuel-Cell Catalysts. Advanced Materials, 2005, 17, 2237-2241.	11.1	68
77	Radial Patterns in Mesoporous Silica. Advanced Materials, 1999, 11, 636-642.	11.1	67
78	Planar tripods of platinum: formation and self-assembly. Physical Chemistry Chemical Physics, 2006, 8, 4660.	1.3	63
79	Thickness control and defects in oriented mesoporous silica films. Journal of Materials Chemistry, 1998, 8, 1205-1211.	6.7	59
80	Quantitative Analysis of Different Formation Modes of Platinum Nanocrystals Controlled by Ligand Chemistry. Nano Letters, 2017, 17, 6146-6150.	4.5	59
81	Strong electrostatic adsorption approach to the synthesis of sub-three nanometer intermetallic platinum–cobalt oxygen reduction catalysts. Nano Energy, 2021, 79, 105465.	8.2	59
82	Synthesis of iron oxide nanorods and nanocubes in an imidazolium ionic liquid. Chemical Engineering Journal, 2009, 147, 71-78.	6.6	58
83	Facile synthesis of Rh–Pd alloy nanodendrites as highly active and durable electrocatalysts for oxygen reduction reaction. Nanoscale, 2014, 6, 7012-7018.	2.8	55
84	Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics. Applied Optics, 2009, 48, 6797.	2.1	53
85	Bionanotechnology: Enabling Biomedical Research with Nanomaterials. Advanced Materials, 2007, 19, 3085-3087.	11.1	50
86	Blueprints for inorganic materials with natural form: inorganic liquid crystals and a language of inorganic shapeâ€Sâ€. Journal of the Chemical Society Dalton Transactions, 1997, , 3941-3952.	1.1	48
87	Direct Synthesis of H ₂ O ₂ on AgPt Octahedra: The Importance of Ag–Pt Coordination for High H ₂ O ₂ Selectivity. ACS Catalysis, 2018, 8, 2880-2889.	5.5	48
88	Single-Phase Pyrochlore Y ₂ Ir ₂ O ₇ Electrocatalyst on the Activity of Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 3992-3998.	2.5	48
89	Fabrication of Magnetic FePt Patterns from Langmuir–Blodgett Films of Platinum–Iron Oxide Core–Shell Nanoparticles. Advanced Materials, 2004, 16, 1337-1341.	11.1	47
90	Platinum Lead Nanostructures: Formation, Phase Behavior, and Electrocatalytic Properties. Advanced Functional Materials, 2008, 18, 2745-2753.	7.8	45

#	Article	IF	CITATIONS
91	Noble-Metal Nanotubes Prepared via a Galvanic Replacement Reaction Between Cu Nanowires and Aqueous HAuCl ₄ , H ₂ PtCl ₆ , or Na ₂ PdCl ₄ . Science of Advanced Materials, 2010, 2, 413-420.	0.1	45
92	Chiral discrimination in the fluorescence quenching of pyrene complexed to β-cyclodextrin. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 86, 209-217.	2.0	42
93	Effect of Amino Acid Coinclusion on the Complexation of Pyrene with β-Cyclodextrin. The Journal of Physical Chemistry, 1996, 100, 14533-14539.	2.9	42
94	Effects of Particle Size on Mg ²⁺ Ion Intercalation into λ-MnO ₂ Cathode Materials. Nano Letters, 2019, 19, 4712-4720.	4.5	41
95	Computational Study on Surface Structure and Crystal Morphology of Î ³ -Fe2O3:Â Toward Deterministic Synthesis of Nanocrystals. Journal of Physical Chemistry B, 2003, 107, 14357-14364.	1.2	40
96	Overpressure Contact Printing. Nano Letters, 2004, 4, 1657-1662.	4.5	40
97	Progress in hydrogen production over transition metal carbide catalysts: challenges and opportunities. Current Opinion in Chemical Engineering, 2018, 20, 68-77.	3.8	40
98	Synthesis of magnetic nanocomposites and alloys from platinum–iron oxide core–shell nanoparticles. Nanotechnology, 2005, 16, S554-S561.	1.3	39
99	Ag–Pt Compositional Intermetallics Made from Alloy Nanoparticles. Nano Letters, 2016, 16, 6599-6603.	4.5	39
100	Bound oxygen-atom transfer endows peroxidase-mimic M–N–C with high substrate selectivity. Chemical Science, 2021, 12, 8865-8871.	3.7	39
101	Improving the High-Current-Density Performance of PEMFC through Much Enhanced Utilization of Platinum Electrocatalysts on Carbon. ACS Applied Materials & Interfaces, 2020, 12, 26076-26083.	4.0	38
102	Rheology of Aqueous Magnetorheological Fluid Using Dual Oxide-Coated Carbonyl Iron Particles. Journal of the American Ceramic Society, 2011, 94, 2386-2392.	1.9	37
103	Engineering Silverâ€Enriched Copper Coreâ€Shell Electrocatalysts to Enhance the Production of Ethylene and C ₂₊ Chemicals from Carbon Dioxide at Low Cell Potentials. Advanced Functional Materials, 2021, 31, 2101668.	7.8	36
104	Synthesis and corrosion study of zirconia-coated carbonyl iron particles. Journal of Colloid and Interface Science, 2010, 342, 49-56.	5.0	33
105	Lattice contracted AgPt nanoparticles. Chemical Communications, 2011, 47, 12595.	2.2	33
106	A Porous Pyrochlore Y ₂ [Ru _{1.6} Y _{0.4}]O _{7–<i>δ</i>} Electrocatalyst for Enhanced Performance towards the Oxygen Evolution Reaction in Acidic Media. Angewandte Chemie, 2018, 130, 14073-14077.	1.6	33
107	Design of bimetallic catalysts and electrocatalysts through the control of reactive environments. Nano Today, 2020, 31, 100832.	6.2	32
108	Toward Ending the Guessing Game: Study of the Formation of Nanostructures Using In Situ Liquid Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 2015, 6, 5051-5061.	2.1	31

#	Article	IF	CITATIONS
109	Beyond the hemicylindrical micellar monolayer on graphite: AFM evidence for a lyotropic liquid crystal film. Advanced Materials, 1997, 9, 917-921.	11.1	28
110	Silane-Based Poly(ethylene glycol) as a Primer for Surface Modification of Nonhydrolytically Synthesized Nanoparticles Using the Stöber Method. Langmuir, 2008, 24, 11189-11195.	1.6	26
111	Nucleation, growth and form of mesoporous silica: role of defects and a language of shape. Studies in Surface Science and Catalysis, 1998, , 119-127.	1.5	25
112	A Motif for Infinite Metal Atom Wires. Angewandte Chemie - International Edition, 2014, 53, 14087-14091.	7.2	25
113	Recent development in the preparation of nanoparticles as fuel cell catalysts. Current Opinion in Chemical Engineering, 2015, 8, 89-97.	3.8	25
114	<i>In situ</i> ETEM study of composition redistribution in Ptâ€Ni octahedral catalysts for electrochemical reduction of oxygen. AICHE Journal, 2016, 62, 399-407.	1.8	24
115	Cobalt-Based Nonprecious Metal Catalysts Derived from Metal–Organic Frameworks for High-Rate Hydrogenation of Carbon Dioxide. ACS Applied Materials & Interfaces, 2019, 11, 27717-27726.	4.0	23
116	Electroforming of Copper Structures at Nanometer-Sized Gaps of Self-assembled Monolayers on Silver. Chemistry of Materials, 2002, 14, 1385-1390.	3.2	22
117	Quantitative Analysis of DNA-Mediated Formation of Metal Nanocrystals. Journal of the American Chemical Society, 2020, 142, 20368-20379.	6.6	22
118	Energy transfer between colloidal semiconductor nanocrystals in an optical microcavity. Applied Physics Letters, 2006, 89, 061104.	1.5	21
119	Regioselective Atomic Rearrangement of Ag–Pt Octahedral Catalysts by Chemical Vapor-Assisted Treatment. Nano Letters, 2016, 16, 7988-7992.	4.5	21
120	Mixed B-site ruddlesden-popper phase Sr2(Ru Ir1-)O4 enables enhanced activity for oxygen evolution reaction. Journal of Energy Chemistry, 2022, 70, 623-629.	7.1	21
121	Synthesis and application of RuSe ₂ _{+ δ} nanotubes as a methanol tolerant electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry, 2009, 19, 1024-1030.	6.7	20
122	Enhanced Stability of (111)‧urfaceâ€Dominant Core–Shell Nanoparticle Catalysts Towards the Oxygen Reduction Reaction. ChemSusChem, 2013, 6, 1888-1892.	3.6	20
123	The roles of surface chemistry, dissolution rate, and delivered dose in the cytotoxicity of copper nanoparticles. Nanoscale, 2017, 9, 4739-4750.	2.8	20
124	W-Doped CaMnO _{2.5} and CaMnO ₃ Electrocatalysts for Enhanced Performance in Oxygen Evolution and Reduction Reactions. Journal of the Electrochemical Society, 2017, 164, F1074-F1080.	1.3	20
125	Functionalized ultrathin palladium nanosheets as patches for HepG2 cancer cells. Chemical Communications, 2015, 51, 14171-14174.	2.2	18
126	Dish-like higher-ordered palladium nanostructures through metal ion-ligand complexation. Nano Research, 2018, 11, 3442-3452.	5.8	18

#	Article	IF	CITATIONS
127	Helical peanut-shaped poly(vinyl pyrrolidone) ribbons generated by electrospinning. Polymer, 2013, 54, 6752-6759.	1.8	17
128	In situ chemical vapor reaction in molten salts for preparation of platinum nanosheets via bubble breakage. Journal of Materials Chemistry, 2012, 22, 12046.	6.7	16
129	Ultrathin and stable AgAu alloy nanowires. Science China Materials, 2015, 58, 595-602.	3.5	13
130	Effects of dentin tubule occlusion by dentifrice containing a PVM/MA bioadhesive copolymer in a silica base. Journal of Dentistry, 2011, 39, 293-301.	1.7	12
131	Identification of key regulatory pathways of myeloid differentiation using an mESC-based karyotypically normal cell model. Blood, 2012, 120, 4712-4719.	0.6	12
132	Control of the composition of Pt–Ni electrocatalysts in surfactant-free synthesis using neat N-formylpiperidine. Nanoscale, 2016, 8, 2548-2553.	2.8	12
133	Rhodiumâ€onâ€Palladium Nanocatalysts for Selective Methanation of Carbon Dioxide. ChemNanoMat, 2017, 3, 639-645.	1.5	12
134	Supportless oxygen reduction electrocatalysts of CoCuPt hollow nanoparticles. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4261-4274.	1.6	11
135	Synthesis and electrocatalytic property of cubic and spherical nanoparticles of cobalt platinum alloys. Frontiers of Chemical Engineering in China, 2010, 4, 45-51.	0.6	10
136	Shaping Nanostructures for Applications in Energy Conversion and Storage. ChemSusChem, 2013, 6, 1781-1783.	3.6	10
137	Kinetic Reconstruction of DNA-Programed Plasmonic Metal Nanostructures with Predictable Shapes and Optical Properties. Journal of the American Chemical Society, 2022, 144, 4410-4421.	6.6	10
138	Phase transition of SrCo _{0.9} Fe _{0.1} O ₃ electrocatalysts and their effects on oxygen evolution reaction. SusMat, 2022, 2, 445-455.	7.8	10
139	Study of the Durability of Faceted Pt ₃ Ni Oxygen–Reduction Electrocatalysts. ChemCatChem, 2012, 4, 1572-1577.	1.8	9
140	Imaging Shape-Dependent Corrosion Behavior of Pt Nanoparticles over Extended Time Using a Liquid Flow Cell and TEM. Microscopy and Microanalysis, 2014, 20, 1508-1509.	0.2	9
141	Dynamics of Transformation from Platinum Icosahedral Nanoparticles to Larger FCC Crystal at Millisecond Time Resolution. Scientific Reports, 2017, 7, 17243.	1.6	9
142	Sequential Oxygen Reduction and Adsorption for Carbon Dioxide Purification for Flue Gas Applications. Energy Technology, 2019, 7, 1800917.	1.8	8
143	Boosting the activity of non-platinum group metal electrocatalyst for the reduction of oxygen via dual-ligated atomically dispersed precursors immobilized on carbon supports. Nano Energy, 2021, 90, 106547.	8.2	7
144	Zirconia coated carbonyl iron particle-based magnetorheological fluid for polishing. Proceedings of SPIE, 2009, , .	0.8	6

#	Article	IF	CITATIONS
145	Continuous Production of Carbonâ€5upported Cubic and Octahedral Platinumâ€Based Catalysts Using Conveyor Transport System. Small, 2016, 12, 4808-4814.	5.2	6
146	Selfâ€Heating Approach to the Fast Production of Uniform Metal Nanostructures. ChemNanoMat, 2016, 2, 37-41.	1.5	6
147	Clean energy technology: materials, processes and devices for electrochemical energy conversion and storage. Frontiers in Energy, 2017, 11, 233-235.	1.2	6
148	Regulating the electronic structures of mixed B-site pyrochlore to enhance the turnover frequency in water oxidation. Nano Convergence, 2022, 9, 22.	6.3	6
149	Cascaded Nanozyme System with High Reaction Selectivity by Substrate Screening and Channeling in a Microfluidic Device**. Angewandte Chemie, 2022, 134, .	1.6	5
150	Selective Reduction of Oxygen on Nonâ€Noble Metal Copper Nanocatalysts. Energy Technology, 2020, 8, 1901213.	1.8	4
151	Polymer Entrapment Flash Pyrolysis for the Preparation of Nanoscale Iridiumâ€Free Oxygen Evolution Electrocatalysts. ChemNanoMat, 2020, 6, 930-936.	1.5	3
152	Thiol–ene photoimmobilization of chymotrypsin on polysiloxane gels for enzymatic peptide synthesis. RSC Advances, 2018, 8, 11843-11849.	1.7	2
153	Dendritic nanostructured FeS ₂ -based high stability and capacity Li-ion cathodes. RSC Advances, 2018, 8, 38745-38750.	1.7	2
154	Effects of Superparamagnetic Iron Nanoparticles on Electrocatalysts for the Reduction of Oxygen. Inorganic Chemistry, 2021, 60, 4236-4242.	1.9	2
155	Multipods and Dendritic Nanoparticles of Platinum: Colloidal Synthesis and Electrocatalytic Property. , 2008, , 307-320.		2
156	Catalytic Removal of Oxygen Impurities from Pressurized Oxy-Combustion Flue Gas for the Production of High-Purity Carbon Dioxide. Energy & Fuels, 2022, 36, 2701-2711.	2.5	2
157	SURFACE MODIFICATIONS AND APPLICATIONS OF MAGNETIC AND SELECTIVE NONMAGNETIC NANOPARTICLES. Annual Review of Nano Research, 2009, , 83-147.	0.2	1
158	Nanomaterials for catalysis, energy and sustainability. Current Opinion in Chemical Engineering, 2013, 2, 139-141.	3.8	1
159	Oxidation of Fe Whiskers and Surface Diffusion Observed by Environmental TEM. Microscopy and Microanalysis, 2014, 20, 1864-1865.	0.2	1
160	PM2.5 Pollution Level of Heavy Metals in Atmospheric Particles in Taiyuan. Applied Mechanics and Materials, 0, 737, 491-494.	0.2	1
161	Chemically controlled surface compositions of Ag–Pt octahedral catalysts. MRS Communications, 2017, 7, 179-182.	0.8	1
162	Using Magnetometry to Understand the Relative Role of Magnetic Particles in Co-Based Catalysts for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 17709-17717.	1.5	1

#	Article	IF	CITATIONS
163	In Situ Observation of Pt Icosahedral Nanoparticles Transformation into FCC Single Crystal. Microscopy and Microanalysis, 2016, 22, 766-767.	0.2	0
164	Catalysts: Continuous Production of Carbon-Supported Cubic and Octahedral Platinum-Based Catalysts Using Conveyor Transport System (Small 35/2016). Small, 2016, 12, 4807-4807.	5.2	0
165	Surface patterns of tetragonal phase FePt thin films from Pt@Fe2O3 core-shell nanoparticles using combined Langmuir-Blodgett and soft lithographic techniques. Materials Research Society Symposia Proceedings, 2003, 776, 1071.	0.1	0
166	(Invited) Pyrochlore-Type, Acid-Stable Electrocatalysts for Oxygen Evolution Reaction. ECS Meeting Abstracts, 2018, , .	0.0	0