Amir H Noormohammadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8836803/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Attenuated Vaccines Can Recombine to Form Virulent Field Viruses. Science, 2012, 337, 188-188.	6.0	154
2	A novel mechanism for control of antigenic variation in the haemagglutinin gene family of Mycoplasma synoviae. Molecular Microbiology, 2000, 35, 911-923.	1.2	113
3	Classification of Fowl Adenovirus Serotypes by Use of High-Resolution Melting-Curve Analysis of the Hexon Gene Region. Journal of Clinical Microbiology, 2009, 47, 311-321.	1.8	111
4	Classification of Mycoplasma synoviae strains using single-strand conformation polymorphism and high-resolution melting-curve analysis of the vlhA gene single-copy region. Microbiology (United) Tj ETQq0 0 0 r	gBTq /Ø verlo	ock100 Tf 50 6
5	Differentiation of Infectious Laryngotracheitis Virus Isolates by Restriction Fragment Length Polymorphic Analysis of Polymerase Chain Reaction Products Amplified from Multiple Genes. Avian Diseases, 2006, 50, 28-33.	0.4	90
6	The central role of lipoproteins in the pathogenesis of mycoplasmoses. Veterinary Microbiology, 2011, 153, 44-50.	0.8	86
7	Mycoplasma synoviae has two distinct phase-variable major membrane antigens, one of which is a putative hemagglutinin. Infection and Immunity, 1997, 65, 2542-2547.	1.0	84
8	Multigene Families Encoding the Major Hemagglutinins in Phylogenetically Distinct Mycoplasmas. Infection and Immunity, 1998, 66, 3470-3475.	1.0	73
9	Application of highâ€resolution melting curve analysis for typing of fowl adenoviruses in field cases of inclusion body hepatitis. Australian Veterinary Journal, 2011, 89, 184-192.	0.5	72
10	Glycoprotein G is a virulence factor in infectious laryngotracheitis virus. Journal of General Virology, 2006, 87, 2839-2847.	1.3	63
11	Relationship between mortality, clinical signs and tracheal pathology in infectious laryngotracheitis. Avian Pathology, 2006, 35, 449-453.	0.8	59
12	Rapid detection and non-subjective characterisation of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Archives of Virology, 2009, 154, 649-60.	0.9	59
13	Epidemiology of recent outbreaks of infectious laryngotracheitis in poultry in Australia. Australian Veterinary Journal, 2011, 89, 89-94.	0.5	58
14	Chronological analysis of gross and histological lesions induced by field strains of fowl adenovirus serotypes 1, 8b and 11 in one-day-old chickens. Avian Pathology, 2015, 44, 106-113.	0.8	56
15	Therapy of murine cutaneous leishmaniasis by DNA vaccination. Vaccine, 2000, 18, 3011-3017.	1.7	51
16	Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microbial Genomics, 2019, 5, .	1.0	51
17	Challenges and recent advancements in infectious laryngotracheitis virus vaccines. Avian Pathology, 2013, 42, 195-205.	0.8	50
18	Spread of the newly emerging infectious laryngotracheitis viruses in Australia. Infection, Genetics and Evolution, 2016, 43, 67-73.	1.0	49

#	Article	IF	CITATIONS
19	Characterization of <i>Chlamydiaceae</i> species using PCR and high resolution melt curve analysis of the 16S rRNA gene. Journal of Applied Microbiology, 2009, 107, 2017-2028.	1.4	48
20	Evaluation of immunological responses to a glycoprotein G deficient candidate vaccine strain of infectious laryngotracheitis virus. Vaccine, 2010, 28, 1325-1332.	1.7	45
21	Infectious Bronchitis Viruses with a Novel Genomic Organization. Journal of Virology, 2008, 82, 2013-2024.	1.5	44
22	Differentiation of Mycoplasma gallisepticum strains using PCR and high-resolution melting curve analysis. Microbiology (United Kingdom), 2010, 156, 1019-1029.	0.7	44
23	Development of a SYBR Green quantitative polymerase chain reaction assay for rapid detection and quantification of infectious laryngotracheitis virus. Avian Pathology, 2011, 40, 237-242.	0.8	43
24	THE PREVALENCE AND CLINICAL SIGNIFICANCE OF <i>CHLAMYDIA</i> INFECTION IN ISLAND AND MAINLAND POPULATIONS OF VICTORIAN KOALAS (<i>PHASCOLARCTOS CINEREUS</i>). Journal of Wildlife Diseases, 2015, 51, 309-317.	0.3	43
25	First complete genome sequence of infectious laryngotracheitis virus. BMC Genomics, 2011, 12, 197.	1.2	42
26	Identification of chlamydial species in crocodiles and chickens by PCR-HRM curve analysis. Veterinary Microbiology, 2010, 145, 373-379.	0.8	40
27	Pathological and microbiological investigations into cases of bacterial chondronecrosis and osteomyelitis in broiler poultry. Avian Pathology, 2017, 46, 683-694.	0.8	36
28	Role of phenotypic diversity in pathogenesis of avian mycoplasmosis. Avian Pathology, 2007, 36, 439-444.	0.8	35
29	Comparative analysis of the complete genome sequences of two Australian origin live attenuated vaccines of infectious laryngotracheitis virus. Vaccine, 2011, 29, 9583-9587.	1.7	30
30	Phylogenetic and Molecular Epidemiological Studies Reveal Evidence of Multiple Past Recombination Events between Infectious Laryngotracheitis Viruses. PLoS ONE, 2013, 8, e55121.	1.1	30
31	Effect of a live <i>Mycoplasma synoviae</i> vaccine on the production of eggshell apex abnormalities induced by a <i>M. synoviae</i> infection preceded by an infection with infectious bronchitis virus D1466. Avian Pathology, 2009, 38, 333-340.	0.8	29
32	Detection of Avian Nephritis Virus in Australian Chicken Flocks. Avian Diseases, 2010, 54, 990-993.	0.4	29
33	The conserved portion of the putative virulence region contributes to virulence of avian pathogenic Escherichia coli. Microbiology (United Kingdom), 2009, 155, 450-460.	0.7	28
34	Comparison of the replication and transmissibility of an infectious laryngotracheitis virus vaccine delivered via eye-drop or drinking-water. Avian Pathology, 2012, 41, 99-106.	0.8	27
35	Comparative <i>in vivo</i> safety and efficacy of a glycoprotein G-deficient candidate vaccine strain of infectious laryngotracheitis virus delivered via eye drop. Avian Pathology, 2011, 40, 411-417.	0.8	26
36	Survey of captive parrot populations around Port Phillip Bay, Victoria, Australia, for psittacine beak and feather disease virus, avian polyomavirus and psittacine adenovirus. Australian Veterinary Journal, 2015, 93, 287-292.	0.5	25

#	Article	IF	CITATIONS
37	Full genome analysis of Australian infectious bronchitis viruses suggests frequent recombination events between vaccine strains and multiple phylogenetically distant avian coronaviruses of unknown origin. Veterinary Microbiology, 2016, 197, 27-38.	0.8	25

38 GapA+ Mycoplasma gallisepticum ts-11 has improved vaccine characteristics. Microbiology (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

39	Growth Kinetics and Transmission Potential of Existing and Emerging Field Strains of Infectious Laryngotracheitis Virus. PLoS ONE, 2015, 10, e0120282.	1.1	24
40	Evaluation of the Non-Temperature-Sensitive Field Clonal Isolates of the Mycoplasma synoviae Vaccine Strain MS-H. Avian Diseases, 2003, 47, 355-360.	0.4	23
41	Differentiation of infectious bursal disease virus strains using real-time RT-PCR and high resolution melt curve analysis. Journal of Virological Methods, 2011, 171, 264-271.	1.0	23
42	Kinetics of transcription of infectious laryngotracheitis virus genes. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 103-115.	0.7	23
43	The vlhA loci of Mycoplasma synoviae are confined to a restricted region of the genome. Microbiology (United Kingdom), 2005, 151, 935-940.	0.7	22
44	IFN-γEnhances Immune Responses toE. coliInfection in the Chicken. Journal of Interferon and Cytokine Research, 2007, 27, 937-946.	0.5	22
45	Horizontal transmission dynamics of a glycoprotein G deficient candidate vaccine strain of infectious laryngotracheitis virus and the effect of vaccination on transmission of virulent virus. Vaccine, 2011, 29, 5699-5704.	1.7	22
46	Mutations in GTP Binding Protein Obg of Mycoplasma synoviae Vaccine Strain MS-H: Implications in Temperature-Sensitivity Phenotype. PLoS ONE, 2013, 8, e73954.	1.1	22
47	Rapid differentiation of current infectious bronchitis virus vaccine strains and field isolates in Australia. Australian Veterinary Journal, 2006, 84, 59-62.	0.5	21
48	Viral load in 1-day-old and 6-week-old chickens infected with chicken anaemia virus by the intraocular route. Avian Pathology, 2006, 35, 471-474.	0.8	21
49	Genotyping of Japanese Field Isolates of Mycoplasma synoviae and Rapid Molecular Differentiation from the MS-H Vaccine Strain. Avian Diseases, 2011, 55, 187-194.	0.4	21
50	Indirect Enzyme-Linked Immunosorbent Assay for Detection of Immunoglobulin G Reactive with a Recombinant Protein Expressed from the Gene Encoding the 116-Kilodalton Protein of <i>Mycoplasma pneumoniae</i> . Journal of Clinical Microbiology, 1999, 37, 1024-1029.	1.8	21
51	Mycoplasma synoviae surface protein MSPB as a recombinant antigen in an indirect ELISA. Microbiology (United Kingdom), 1999, 145, 2087-2094.	0.7	20
52	Naturally occurring recombination between distant strains of infectious bronchitis virus. Archives of Virology, 2010, 155, 1581-1586.	0.9	20
53	Infectious bronchitis viruses with naturally occurring genomic rearrangement and gene deletion. Archives of Virology, 2011, 156, 245-252.	0.9	20
54	High-Resolution Melting-Curve Analysis of obg Gene to Differentiate the Temperature-Sensitive Mycoplasma synoviae Vaccine Strain MS-H from Non-Temperature-Sensitive Strains. PLoS ONE, 2014, 9, e92215.	1.1	20

#	Article	IF	CITATIONS
55	TonB is essential for virulence in avian pathogenic Escherichia coli. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 129-138.	0.7	19
56	Application of highâ€resolution melt curve analysis for classification of infectious bronchitis viruses in field specimens. Australian Veterinary Journal, 2010, 88, 408-413.	0.5	18
57	Typing infectious bronchitis virus strains using reverse transcription-polymerase chain reaction and restriction fragment length polymorphism analysis to compare the 3′ 7.5 kb of their genomes. Avian Pathology, 2006, 35, 63-69.	0.8	17
58	Evaluation of a novel strain of infectious bronchitis virus emerged as a result of spike gene recombination between two highly diverged parent strains. Avian Pathology, 2014, 43, 249-257.	0.8	17
59	Development of a <i>Mycoplasma gallisepticum</i> infection model in turkeys. Avian Pathology, 2015, 44, 35-42.	0.8	17
60	Mutation of oppF gene in the Mycoplasma synoviae MS-H vaccine strain and its implication for differential serological responses to vaccination versus field challenge. Veterinary Microbiology, 2019, 231, 48-55.	0.8	16
61	Detection of Antibodies to Mycoplasma gallisepticum Vaccine ts-11 by an Autologous pMGA Enzyme-Linked Immunosorbent Assay. Avian Diseases, 2002, 46, 405-411.	0.4	15
62	Duration of Immunity with Mycoplasma synoviae: Comparison of the Live Attenuated Vaccine MS-H (Vaxsafe MS) with Its Wild-Type Parent Strain, 86079/7NS. Avian Diseases, 2006, 50, 228-231.	0.4	15
63	Comparison of the replication and transmissibility of two infectious laryngotracheitis virus chicken embryo origin vaccines delivered via drinking water. Avian Pathology, 2012, 41, 195-202.	0.8	15
64	Combination of differential growth at two different temperatures with a quantitative real-time polymerase chain reaction to determine temperature-sensitive phenotype of <i>Mycoplasma synoviae</i> . Avian Pathology, 2013, 42, 185-191.	0.8	15
65	A polymerase chain reaction-coupled high-resolution melting curve analytical approach for the monitoring of monospecificity of avian <i>Eimeria</i> species. Avian Pathology, 2009, 38, 13-19.	0.8	14
66	Safety and vaccine efficacy of a glycoprotein G deficient strain of infectious laryngotracheitis virus delivered in ovo. Vaccine, 2012, 30, 7193-7198.	1.7	14
67	Comparison of multiple genes and 16S–23S rRNA intergenic space region for their capacity in high resolution melt curve analysis to differentiate Mycoplasma gallisepticum vaccine strain ts-11 from field strains. Veterinary Microbiology, 2013, 167, 440-447.	0.8	14
68	Identification of a new genetic marker in Mycoplasma synoviae vaccine strain MS-H and development of a strategy using polymerase chain reaction and high-resolution melting curve analysis for differentiating MS-H from field strains. Veterinary Microbiology, 2017, 210, 49-55.	0.8	14
69	Genome analysis of Mycoplasma synoviae strain MS-H, the most common M. synoviae strain with a worldwide distribution. BMC Genomics, 2018, 19, 117.	1.2	14
70	Comparative genomic analyses of <i>Mycoplasma synoviae</i> vaccine strain MS-H and its wild-type parent strain 86079/7NS: implications for the identification of virulence factors and applications in diagnosis of <i>M. synoviae</i> . Avian Pathology, 2019, 48, 537-548.	0.8	14
71	Onset of Immunity with Mycoplasma synoviae: Comparison of the Live Attenuated Vaccine MS-H (Vaxsafe MS) with Its Wild-Type Parent Strain (86079/7NS). Avian Diseases, 2006, 50, 82-87	0.4	13
72	Evaluation of the Capacity of PCR and High-Resolution Melt Curve Analysis for Identification of Mixed Infection with Mycoplasma gallisepticum Strains. PLoS ONE, 2015, 10, e0126824.	1.1	13

#	Article	IF	CITATIONS
73	Evaluation of Mycoplasma gallisepticum (MG) ts-304 vaccine as a live attenuated vaccine in turkeys. Vaccine, 2018, 36, 2487-2493.	1.7	13
74	Determination of the Effective Dose of the Live Mycoplasma synoviae Vaccine, Vaxsafe MS (Strain MS-H) by Protection Against Experimental Challenge. Avian Diseases, 2006, 50, 88-91.	0.4	12
75	Discrepancy between minimal inhibitory concentration to enrofloxacin and mutations present in the quinolone-resistance determining regions of Mycoplasma gallisepticum field strains. Veterinary Microbiology, 2012, 160, 222-226.	0.8	12
76	Infectious Laryngotracheitis Virus Viral Chemokine-Binding Protein Glycoprotein G Alters Transcription of Key Inflammatory Mediators In Vitro and In Vivo. Journal of Virology, 2018, 92, .	1.5	12
77	The presence of viral subpopulations in an infectious bronchitis virus vaccine with differing pathogenicity – A preliminary study. Vaccine, 2012, 30, 4190-4199.	1.7	11
78	Evidence of apoptosis induced by viral protein 2 of chicken anaemia virus. Archives of Virology, 2015, 160, 2557-2563.	0.9	11
79	Duration of protective immunity induced by Mycoplasma gallisepticum strain ts-304 vaccine in chickens. Veterinary Microbiology, 2020, 251, 108883.	0.8	11
80	Effects of immunosuppression on the efficacy of vaccination against Mycoplasma gallisepticum infection in chickens. Veterinary Microbiology, 2021, 260, 109182.	0.8	11
81	Improved detection of antibodies to Mycoplasma synoviae vaccine MS-H using an autologous recombinant MSPB enzyme-linked immunosorbent assay. Avian Pathology, 2002, 31, 611-617.	0.8	10
82	Development and immunogenicity of recombinant Mycoplasma gallisepticum vaccine strain ts-11 expressing chicken IFN-γ. Vaccine, 2008, 26, 5449-5454.	1.7	10
83	Development of an oriC vector for use in Mycoplasma synoviae. Journal of Microbiological Methods, 2014, 103, 70-76.	0.7	10
84	Comparison of the short-term and long-term efficacies of the <i>Mycoplasma gallisepticum</i> vaccines ts-11 and 6/85. Avian Pathology, 2019, 48, 238-244.	0.8	10
85	Development of an Enzyme-Linked Immunosorbent Assay to Detect Chicken Serum Antibody to Glycoprotein G of Infectious Laryngotracheitis Virus. Avian Diseases, 2012, 56, 509-515.	0.4	9
86	Avian pathogenic Escherichia coli ΔtonB mutants are safe and protective live-attenuated vaccine candidates. Veterinary Microbiology, 2014, 173, 289-298.	0.8	9
87	Mycoplasma gallisepticum strain ts-304 is a safe and effective live attenuated vaccine for use in chickens. Veterinary Microbiology, 2020, 244, 108654.	0.8	9
88	Immunological and Biochemical Characterization of Membrane Proteins. , 1998, 104, 279-298.		8
89	Protection Induced in Broiler Chickens following Drinking-Water Delivery of Live Infectious Laryngotracheitis Vaccines against Subsequent Challenge with Recombinant Field Virus. PLoS ONE, 2015, 10, e0137719.	1.1	8
90	Development and Validation of TaqMan Real-Time Polymerase Chain Reaction Assays for the Quantitative and Differential Detection of Wild-Type Infectious Laryngotracheitis Viruses from a Glycoprotein G–Deficient Candidate Vaccine Strain. Avian Diseases, 2015, 59, 7-13.	0.4	8

#	Article	IF	CITATIONS
91	High-resolution melt curve analysis to confirm the presence of co-circulating isolates of avian nephritis virus in commercial chicken flocks. Avian Pathology, 2015, 44, 443-451.	0.8	8
92	Chronologic Analysis of Gross and Histologic Lesions Induced by Field Strains of FAdV-1, FAdV-8b, and FAdV-11 in Six-Week-Old Chickens. Avian Diseases, 2017, 61, 512.	0.4	8
93	Development and application of high-resolution melting analysis for the classification of infectious laryngotracheitis virus strains and detection of recombinant progeny. Archives of Virology, 2019, 164, 427-438.	0.9	8
94	Full genomic characterisation of an emerging infectious laryngotracheitis virus class 7b from Australia linked to a vaccine strain revealed its identity. Infection, Genetics and Evolution, 2020, 78, 104067.	1.0	8
95	Polyacrylamide Gel-Electrophoresis Separation of Whole-Cell Proteins. , 1998, 104, 267-277.		7
96	Safety and Efficacy of the Mycoplasma synoviae MS-H Vaccine in Turkeys. Avian Diseases, 2007, 51, 550-554.	0.4	7
97	Differential transcription patterns in wild-type and glycoprotein G-deleted infectious laryngotracheitis viruses. Avian Pathology, 2013, 42, 253-259.	0.8	7
98	Immune responses to vaccination and infection with <i>Mycoplasma gallisepticum</i> in turkeys. Avian Pathology, 2017, 46, 464-473.	0.8	7
99	Vaccination with FAdV-8a induces protection against inclusion body hepatitis caused by homologous and heterologous strains. Avian Pathology, 2019, 48, 396-405.	0.8	7
100	Complementation of the Mycoplasma synoviae MS-H vaccine strain with wild-type obg influencing its growth characteristics. PLoS ONE, 2018, 13, e0194528.	1.1	6
101	Pathogenesis and tissue tropism of natural field recombinants of infectious laryngotracheitis virus. Veterinary Microbiology, 2020, 243, 108635.	0.8	6
102	Transcriptomic Analysis of Long-Term Protective Immunity Induced by Vaccination With Mycoplasma gallisepticum Strain ts-304. Frontiers in Immunology, 2020, 11, 628804.	2.2	6
103	Assessment of the potential relationship between egg quality and infectious bronchitis virus infection in Australian layer flocks. Australian Veterinary Journal, 2014, 92, 132-138.	0.5	5
104	Characterisation of the antigenic epitopes in the subunit 2 haemagglutinin of avian influenza virus H5N1. Archives of Virology, 2018, 163, 2199-2212.	0.9	5
105	Preliminary comparative analysis of the genomes of selected field reisolates of the Mycoplasma synoviae vaccine strain MS-H reveals both stable and unstable mutations after passage in vivo. BMC Genomics, 2020, 21, 598.	1.2	5
106	Mucosal immune responses in the trachea after chronic infection with <scp><i>Mycoplasma gallisepticum</i></scp> in unvaccinated and vaccinated mature chickens. Cellular Microbiology, 2021, 23, e13383.	1.1	5
107	Characterisation of the whole genome sequence of an avian hepatitis E virus directly from clinical specimens reveals possible recombination events between European and USA strains. Infection, Genetics and Evolution, 2021, 96, 105095.	1.0	5
108	Organization of theMycoplasma synoviaeWVU 1853TvlhAgene locus. Avian Pathology, 2006, 35, 53-57.	0.8	4

#	Article	IF	CITATIONS
109	The C-terminal end of the capsid protein of Avian Nephritis Virus is antigenic and induces broadly cross-reactive antibodies. Journal of Virological Methods, 2015, 221, 106-114.	1.0	4
110	Avian mycobacteriosis in captive brolgas (<i>Antigone rubicunda</i>). Australian Veterinary Journal, 2019, 97, 81-86.	0.5	4
111	Investigation onto the correlation between systemic antibodies to surface glycoproteins of infectious laryngotracheitis virus (ILTV) and protective immunity. Veterinary Microbiology, 2019, 228, 252-258.	0.8	4
112	Investigation of systemic isosporosis outbreaks in an aviary of greenfinch (Carduelis chloris) and goldfinch (Carduelis carduelis) and a possible link with local wild sparrows (Passer domesticus). Australian Veterinary Journal, 2020, 98, 338-344.	0.5	4
113	Welfare implications of bacterial and viral infectious diseases for laying hens. Animal Production Science, 2021, 61, 1018.	0.6	4
114	Fatal skull trauma in caged layer chickens associated with a moving feed hopper: diagnosis based on autopsy examination, forensic computed tomography and farm visit. Avian Pathology, 2012, 41, 391-394.	0.8	3
115	Cross-Protective Immune Responses Between Genotypically Distinct Lineages of Infectious Laryngotracheitis Viruses. Avian Diseases, 2013, 58, 147.	0.4	3
116	Infectious bronchitis virus in Australia: a model of coronavirus evolution – a review. Avian Pathology, 2021, 50, 295-310.	0.8	3
117	Classification of Fowl Adenovirus Serotypes by Use of High-Resolution Melting-Curve Analysis of the Hexon Gene Region. Journal of Clinical Microbiology, 2009, 47, 1616-1616.	1.8	2
118	Safety and efficacy of a Mycoplasma gallisepticum oppD knockout mutant as a vaccine candidate. Vaccine, 2017, 35, 6248-6253.	1.7	2
119	Analysis of antibody response to an epitope in the haemagglutinin subunit 2 of avian influenza virus H5N1 for differentiation of infected and vaccinated chickens. Avian Pathology, 2020, 49, 161-170.	0.8	2
120	Development of a rapid technique for extraction of viral DNA/RNA for whole genome sequencing directly from clinical liver tissues. Journal of Virological Methods, 2020, 283, 113907.	1.0	1
121	Infectious Laryngotracheitis Virus. , 2019, , .		1
122	The epidemiology of ILT in Australia - insufficient data to support the conclusions. Australian Veterinary Journal, 2011, 89, 281-281.	0.5	0
123	Trevor John Bagust (1944-2014). Avian Pathology, 2014, 43, 282-283.	0.8	Ο
124	Trevor Bagust—an appreciation. Avian Pathology, 2014, 43, 107-107.	0.8	0
125	Complementation of the <i>Mycoplasma synoviae</i> MS-H vaccine strain with wild-type <i>oppF₁</i> influences its growth characteristics. Avian Pathology, 2020, 49, 275-285.	0.8	0
126	Mycoplasma synoviae surface protein MSPB as a recombinant antigen in an indirect ELISA. Microbiology (United Kingdom), 1999, 145, 3317-3317.	0.7	0

#	Article	IF	CITATIONS
127	Rapid typing of infectious laryngotracheitis virus directly from tracheal tissues based on next-generation sequencing. Archives of Virology, 2022, 167, 1151-1155.	0.9	0