Juan HernÃ;ndez-Cordero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8836774/publications.pdf

Version: 2024-02-01

516561 477173 109 946 16 29 citations h-index g-index papers 111 111 111 968 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Experimental and computational model approach to assess the photothermal effects in transparent nanocrystalline yttria stabilized zirconia cranial implant. Computer Methods and Programs in Biomedicine, 2022, 221, 106896.	2.6	O
2	Controlled Fabrication of Polymer End-Capped Fiber Optic Sensors. IEEE Sensors Journal, 2021, 21, 9203-9209.	2.4	4
3	Fiber optic probe with functional polymer composites for hyperthermia. Biomedical Optics Express, 2021, 12, 4730.	1.5	1
4	Photomechanical Polymer Nanocomposites for Drug Delivery Devices. Molecules, 2021, 26, 5376.	1.7	5
5	Photothermal fiber optic probes for thermal therapy. , 2021, , .		O
6	Optical access to the brain through a transparent cranial implant. , 2020, , .		1
7	Fiber optic biosensor based on polydimethylsiloxane (PDMS) and bioactive lipids. , 2020, , .		1
8	Fiber optic interferometric immunosensor based on polydimethilsiloxane (PDMS) and bioactive lipids. Biomedical Optics Express, 2020, 11, 1316.	1.5	19
9	Tunable microring resonators using light-activated functional polymer coatings. Optics Letters, 2020, 45, 6030.	1.7	1
10	Enhanced near infrared optical access to the brain with a transparent cranial implant and scalp optical clearing. Biomedical Optics Express, 2019, 10, 3369.	1.5	14
11	Fiber optic fluorescence temperature sensors using up-conversion from rare-earth polymer composites. Optics Letters, 2019, 44, 1194.	1.7	18
12	Scaling photonic lanterns for space-division multiplexing. Scientific Reports, 2018, 8, 8897.	1.6	57
13	Random laser imaging of bovine pericardium under the uniaxial tensile test. Biomedical Optics Express, 2018, 9, 3523.	1.5	2
14	Optical trapping and micromanipulation with a photonic lantern-mode multiplexer. Optics Letters, 2018, 43, 1303.	1.7	19
15	Evaluation of Optical Access to the Brain in the Near Infrared Range with a Transparent Cranial Implant. , 2018, , .		4
16	Composite polymer membranes for laser-induced fluorescence thermometry. Optical Materials Express, 2018, 8, 3072.	1.6	3
17	Fiber optic temperature sensors with polymer-based fluorescent materials. , 2018, , .		O
18	Optical Trapping and Manipulation of Multiple Microparticles Using SDM Fibers. , 2018, , .		0

#	Article	lF	Citations
19	Enhanced photomechanical response of a Ni–Ti shape memory alloy coated with polymer-based photothermal composites. Smart Materials and Structures, 2017, 26, 105012.	1.8	7
20	Fabrication of large all-PDMS micropatterned waveguides for lab on chip integration using a rapid prototyping technique. Optical Materials Express, 2017, 7, 1343.	1.6	13
21	Photothermal Effects and Applications of Polydimethylsiloxane Membranes with Carbon Nanoparticles. Polymers, 2016, 8, 84.	2.0	28
22	Nonlinear optical properties of dielectric nanocolloids: Particle size and concentration effects. Journal of Nonlinear Optical Physics and Materials, 2016, 25, 1650048.	1.1	4
23	Photothermal lesions in soft tissue induced by optical fiber microheaters. Biomedical Optics Express, 2016, 7, 1138.	1.5	12
24	Few layers graphene as thermally activated optical modulator in the visible-near IR spectral range. Optics Letters, 2016, 41, 167.	1.7	6
25	Characterization of optical nonlinearity and formation of Self-Collimated Beams in nanocolloids. , 2016, , .		1
26	Fabrication and Applications of Optical Fiber Micro-heaters. , 2016, , .		0
27	Photomechanical response of PDMS+CNP composite under IR irradiation detected by dynamic speckle. , 2016, , .		О
28	Photomechanical actuator of Ni-Ti shape memory alloy coated with a carbon composite. , 2016, , .		O
29	Fiber Coupled Optically Tunable Polymer/Glass Microring Resonators. , 2016, , .		1
30	An optopneumatic piston for microfluidics. Lab on A Chip, 2015, 15, 1335-1342.	3.1	4
31	Heat generation and conduction in PDMS-carbon nanoparticle membranes irradiated with optical fibers. International Journal of Thermal Sciences, 2015, 96, 12-22.	2.6	67
32	Controlled Deposition of Polymer Coatings on Cylindrical Photonic Devices. Journal of Lightwave Technology, 2015, 33, 176-182.	2.7	8
33	Photomechanical response of composites based on PDMS and carbon soot nanoparticles under IR laser irradiation. Optical Materials Express, 2015, 5, 1792.	1.6	21
34	Mechanical assessment of bovine pericardium using Mýeller matrix imaging, enhanced backscattering and digital image correlation analysis. Biomedical Optics Express, 2015, 6, 2953.	1.5	6
35	Six mode selective fiber optic spatial multiplexer. Optics Letters, 2015, 40, 1663.	1.7	137
36	Microbubble Generation with Tapered Optical Fibers. , 2015, , .		1

#	Article	IF	Citations
37	Fabrication Process for PDMS Polymer/Silica Long-Period Fiber Grating Sensors. IEEE Photonics Technology Letters, 2015, 27, 2150-2153.	1.3	7
38	Optical spatial solitons in bidisperse fluorescent nanocolloids., 2015,,.		O
39	On the Motion of Carbon Nanotube Clusters near Optical Fiber Tips: Thermophoresis, Radiative Pressure, and Convection Effects. Langmuir, 2015, 31, 10066-10075.	1.6	8
40	Waveguides in colloidal nanosuspensions. , 2014, , .		2
41	Angular distribution of random laser emission. Optics Letters, 2014, 39, 655.	1.7	11
42	PDMS Laser-Induced Forward Transfer using a CD-DVD laser platform. , 2014, , .		0
43	Fiber optic Fabry-Perot sensor for surface tension analysis. Optics Express, 2014, 22, 3028.	1.7	21
44	Compact bubble clusters in Newtonian and non-Newtonian liquids. Physics of Fluids, 2014, 26, .	1.6	15
45	Thermocapillary Flow in Glass Tubes Coated with Photoresponsive Layers. Langmuir, 2014, 30, 5326-5336.	1.6	12
46	Analysis of Interfacial Properties of Confined Liquid-Glass Pairs Using Etched Optical Fibers. , 2014, , .		0
47	Functional Polymer Coatings for Photonic Devices. , 2014, , .		O
48	Enhanced backscattering measurements in bovine pericardium tensile tests., 2014,,.		O
49	New perspectives for direct PDMS microfabrication using a CD-DVD laser. Lab on A Chip, 2013, 13, 4848.	3.1	24
50	All-Optical Broadband Variable Optical Attenuator Based on an ${m As}_{2}m Se_{3}$ Microwire. IEEE Photonics Technology Letters, 2013, 25, 697-700.	1.3	3
51	Evaluation of mechanical behavior of soft tissue by means of random laser emission. Review of Scientific Instruments, 2013, 84, 104301.	0.6	23
52	Fabrication of polymer Fabry-Perot fiber sensors using optical fiber microheaters. , 2013, , .		0
53	Laser induced deformation in polydimethylsiloxane membranes with embedded carbon nanopowder. Smart Materials and Structures, 2013, 22, 037001.	1.8	5
54	Power spectral distributions of pseudo-turbulent bubbly flows. Physics of Fluids, 2013, 25, .	1.6	42

#	Article	IF	Citations
55	Optically Controlled Wavelength Tunable Fused Fiber Coupler., 2013,,.		2
56	Laser Direct Microfabrication Using Light-Induced Nanoparticle Incandescence., 2012,,.		0
57	Microbubble generation using fiber optic tips coated with nanoparticles. Optics Express, 2012, 20, 8732.	1.7	29
58	Angular study of the random laser emission. , 2012, , .		0
59	Laser Triggered Displacement of Embedded Carbon Microparticles in PDMS. , 2012, , .		o
60	Optically Driven All-Fiber Polarization Rotator. Journal of Lightwave Technology, 2011, 29, 1672-1677.	2.7	5
61	Nanoparticle coated optical fibers for single microbubble generation. Proceedings of SPIE, 2011, , .	0.8	1
62	Liquids analysis using back reflection single-mode fiber sensors. Proceedings of SPIE, $2011, \ldots$	0.8	5
63	Low-cost and biocompatible long-period fiber gratings. , 2011, , .		1
64	Effects of scatterer size and concentration on the spectral features of dye-based random lasers. , $2011, , .$		2
65	Characterization of a Low-Cost Long-Period Fiber Grating Induced by a Polymeric Microstructure. , 2011, , .		O
66	Polarization switched frequency shifted feedback fiber laser. , 2010, , .		0
67	Intra-cavity fiber laser polarization mode beating sensing. , 2010, , .		O
68	Optically controlled all-fiber polarization rotator. Proceedings of SPIE, 2010, , .	0.8	0
69	Single-mode optical fiber liquids analyzer. , 2010, , .		O
70	Optically driven deposition of nanostructures on optical fiber end faces. , 2010, , .		3
71	Front Matter: Volume 7839. Proceedings of SPIE, 2010, , .	0.8	1
72	Highly-sensitive Measurements of Changes in Density and Refractive Index of Air using Fiber Laser Polarization Mode Beating Techniques. , 2010, , .		2

#	Article	IF	Citations
7 3	Single Polarization-Mode-Beating Frequency Fiber Laser. IEEE Photonics Technology Letters, 2009, 21, 537-539.	1.3	7
74	Multirate and Dual-Wavelength Semiconductor Fiber Laser. IEEE Photonics Technology Letters, 2009, 21, 808-810.	1.3	3
7 5	Highly-sensitive Intracavity Detection using Polarization Mode Beating Techniques. , 2009, , .		1
76	Multiwavelength and Tunable Self-Pulsating Fiber Cavity Based on Regenerative SPM Spectral Broadening and Filtering. IEEE Photonics Technology Letters, 2008, 20, 1497-1499.	1.3	29
77	Multiwavelength and tunable regenerative laser resonator with passive self-pulsating action. , 2008, , .		O
78	All-optical clock recovery in a semiconductor fiber laser and a nonlinear optical loop modulator with wavelength-switching capability. , 2008, , .		0
79	Highly Nonlinear Fibers in All-Optical Modulators. AIP Conference Proceedings, 2008, , .	0.3	1
80	Multi-channel all-optical signal processing using a single multi-channel all-optical loop modulator. , 2008, , .		1
81	Tunable mode-locked semiconductor fiber laser using a nonlinear optical loop mirror. , 2008, , .		O
82	Multiwavelength self-pulsating fibre laser based on cascaded SPM spectral broadening and filtering. Proceedings of SPIE, 2008, , .	0.8	0
83	Polarization mode beating intracavity technique for fiber laser sensing. Proceedings of SPIE, 2008, , .	0.8	О
84	Modulation in optical fiber lasers using polarization feedback. , 2007, , .		0
85	Device for characterization of thermal effusivity of liquids using photothermal beam deflection. Review of Scientific Instruments, 2007, 78, 104901.	0.6	10
86	Intra-cavity fiber laser technique for high accuracy birefringence measurement. Optics Express, 2006, 14, 7594.	1.7	5
87	Fiber lasers with hybrid birefringence resonators. Optics and Lasers in Engineering, 2006, 44, 1027-1038.	2.0	1
88	High Sensitivity Detection Using Intra-Cavity Mode Beating. , 2006, , .		0
89	Programmable control system for wavelength tuning and stabilization of optical fiber lasers. Optical Engineering, 2005, 44, 044201.	0.5	O
90	Enhancement in sensitivity for fiber-optic torsion sensors. IEEE Sensors Journal, 2005, 5, 1332-1337.	2.4	1

#	Article	IF	CITATIONS
91	Polarization switching in an Er-doped fiber lasers using an intra-cavity electro-optical switch., 2005, 6004, 165.		0
92	Intra-cavity polarization switching in optical fiber lasers. , 2004, , .		0
93	Technique for referencing of fiber-optic intensity-modulated sensors by use of counterpropagating signals. Optics Letters, 2004, 29, 1467.	1.7	14
94	Computer-controlled tunable fiber laser. , 2004, , .		0
95	<title>Superluminescent fiber laser sources for fiber optics sensors</title> ., 2004, , .		0
96	<title>Heat flux sensor based on photothermal beam deflection for thermal characterization of liquids</title> ., 2004, 5478, 274.		0
97	Prototype security system for Mexico City's light train crossings. , 2004, , .		0
98	Torsion sensors based on the fiber optic Malus Fabry-Perot interferometer. , 2004, , .		1
99	Matrix analysis for fiber lasers with hybrid birefringence resonators. , 2003, , .		0
100	Polarization switched optical fiber laser for AC optical nulling bridges. , 2003, 4833, 840.		0
101	Real-time, high-gain, computer controlled amplifier for optical detection systems. Review of Scientific Instruments, 2002, 73, 203-208.	0.6	1
102	Highly accurate method for single-mode fiber laser wavelength measurement. IEEE Photonics Technology Letters, 2002, 14, 83-85.	1.3	10
103	Multiplexed fiber-optic Bragg stack sensors (FOBSS) for elevated temperatures. IEEE Photonics Technology Letters, 2001, 13, 514-516.	1.3	7
104	Polarization effects in a high-birefringence elliptical fiber laser with a Bragg grating in a low-birefringence fiber. Applied Optics, 2000, 39, 972.	2.1	8
105	Silica-air double-clad optical fiber. IEEE Photonics Technology Letters, 2000, 12, 1007-1009.	1.3	4
106	<title>Gas sensors based on fiber laser intracavity spectroscopy (FLICS)</title> ., 1999,,.		4
107	All-fiber coherent beam combining of fiber lasers. Optics Letters, 1999, 24, 1814.	1.7	92
108	Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber. IEEE Photonics Technology Letters, 1998, 10, 941-943.	1.3	56