Mohamed A M Habib

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8836737/mohamed-a-m-habib-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

222
papers

4,397
citations

h-index

55
g-index

5,202
ext. papers

4.4
avg, IF

55
L-index

#	Paper	IF	Citations
222	Effects of adiabatic flame temperature on flames[tharacteristics in a gas-turbine combustor. Energy, 2022 , 243, 123077	7.9	1
221	Experimental and Statistical ANOVA Analysis on Combustion Stability of CH4/O2/CO2 in a Partially Premixed Gas Turbine Combustor. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2022 , 144,	2.6	1
220	Azo-Linked Porous Organic Polymers for Selective Carbon Dioxide Capture and Metal Ion Removal <i>ACS Omega</i> , 2022 , 7, 14535-14543	3.9	O
219	Computational chemistry methods for modelling non-covalent interactions and chemical reactivity[An overview. <i>Journal of the Indian Chemical Society</i> , 2021 , 98, 100208		4
218	Comprehensive parametric investigation of methane reforming and hydrogen separation using a CFD model. <i>Energy Conversion and Management</i> , 2021 , 249, 114838	10.6	1
217	Palladium-Alloy Membrane Reactors for Fuel Reforming and Hydrogen Production: A Review. <i>Energy & Description of the Energy & Description of t</i>	4.1	12
216	On the quality of micromixing in an oxy-fuel micromixer burner for gas turbine applications: A numerical study. <i>Chemical Engineering and Processing: Process Intensification</i> , 2021 , 162, 108336	3.7	2
215	Numerical analysis supported with experimental measurements of premixed oxy-propane flames in a fuel-flex gas turbine combustor. <i>International Journal of Energy Research</i> , 2021 , 45, 16038-16061	4.5	О
214	Experimental and numerical investigation of stability and emissions of hydrogen-assisted oxy-methane flames in a multi-hole model gas-turbine burner. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 20093-20106	6.7	4
213	Operability of a premixed combustor holding hydrogen-enriched oxy-methane flames: An experimental and numerical study. <i>International Journal of Energy Research</i> , 2021 , 45, 3049-3063	4.5	2
212	Structural and computational analyses of a 2-propanolammonium-chlorocadmate(II) assembly: Pivotal role of hydrogen bonding and HH interactions. <i>Journal of Molecular Structure</i> , 2021 , 1223, 12899	9 8 ·4	5
211	Comparative analysis of the stability and structure of premixed C3H8/O2/CO2 and C3H8/O2/N2 flames for clean flexible energy production. <i>Energy</i> , 2021 , 214, 118887	7.9	3
210	Thermodynamic Assessment of Membrane-Assisted Premixed and Non-Premixed Oxy-Fuel Combustion Power Cycles. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2021 , 143,	2.6	3
209	PREPARATION OF CELLULOSE NANOCRYSTALS FROM DATE PALM TREE LEAFLETS (PHOENIX DACTYLIFERA L.) VIA REPEATED CHEMICAL TREATMENTS. <i>Cellulose Chemistry and Technology</i> , 2021 , 55, 33-39	1.9	О
208	Effects of jet diameter and spacing in a micromixer-like burner for clean oxy-fuel combustion in gas turbines. <i>Energy</i> , 2021 , 228, 120561	7.9	2
207	Numerical modeling of heat transfer characteristics in a two-pass oxygen transport reactor for fire tube boilers under oxy-fuel combustion. <i>Applied Thermal Engineering</i> , 2021 , 195, 117248	5.8	4
206	Operability of Fuel/Oxidizer-Flexible Combustor Holding Hydrogen-Enriched Partially Premixed Oxy-Flames Stabilized over a Perforated Plate Burner. <i>Energy & Description</i> 2020, 34, 8653-8665	4.1	3

(2020-2020)

205	A newly synthesized nitrogen-rich derivative of bicyclic quinoxalineBtructural and conceptual DFT reactivity study. <i>Journal of Physical Organic Chemistry</i> , 2020 , 33, e4055	2.1	14	
204	Approaches for Clean Combustion in Gas Turbines. Fluid Mechanics and Its Applications, 2020,	0.2	3	
203	Numerical Investigation of Oxygen Permeation Through a Ba0.5Sr0.5Co0.8Fe0.2O3Ilon Transport Membrane With Impingement Flow. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2020 , 142,	2.6	2	
202	Gas Turbine Performance for Different Burner Technologies. <i>Fluid Mechanics and Its Applications</i> , 2020 , 165-257	0.2		
201	Neutral nickel(II) complex bearing hemilabile N,S-donor ligands [structural, Hirshfeld surfaces and DFT studies. <i>Molecular Crystals and Liquid Crystals</i> , 2020 , 709, 98-110	0.5	2	
200	Operability of Fuel/Oxidizer-Flexible Gas Turbine Combustors. <i>Fluid Mechanics and Its Applications</i> , 2020 , 259-319	0.2		
199	Burner Designs for Clean Power Generation in Gas Turbines. <i>Fluid Mechanics and Its Applications</i> , 2020 , 99-164	0.2		
198	Hybrid Membrane and Porous-Plates Reactors for Gas Turbine Applications. <i>Fluid Mechanics and Its Applications</i> , 2020 , 321-417	0.2	1	
197	Premixed Combustion for Gas-Turbine Applications. Fluid Mechanics and Its Applications, 2020, 13-97	0.2		
196	Global Warming and Emission Regulations. Fluid Mechanics and Its Applications, 2020, 1-12	0.2	3	
195	High gas permselectivity in ZIF-302/polyimide self-consistent mixed-matrix membrane. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 48513	2.9	19	
194	Energy, exergy and parametric analysis of a combined cycle power plant. <i>Thermal Science and Engineering Progress</i> , 2020 , 15, 100450	3.6	14	
193	Second law analysis of premixed and non-premixed oxy-fuel combustion cycles utilizing oxygen separation membranes. <i>Applied Energy</i> , 2020 , 259, 114213	10.7	7	
192	A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines. <i>Applied Energy</i> , 2020 , 279, 115818	10.7	5	
191	Heat flux and friction losses effects on natural circulation package boilers. <i>Thermal Science and Engineering Progress</i> , 2020 , 20, 100738	3.6	1	
190	CFD modeling of hydrogen separation through Pd-based membrane. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 23006-23019	6.7	11	
189	Review of Fuel/Oxidizer-Flexible Combustion in Gas Turbines. Energy & Damp; Fuels, 2020, 34, 10459-1048	5 4.1	3	
				ij

187	Highly Efficient Permeation and Separation of Gases with Metal-Organic Frameworks Confined in Polymeric Nanochannels. <i>ACS Applied Materials & English Separation</i> , 12, 49992-50001	9.5	27
186	CFD modeling of liquid film reversal of two-phase flow in vertical pipes. <i>Journal of Petroleum Exploration and Production</i> , 2019 , 9, 3039-3070	2.2	1
185	Experimental study on combustion characteristics and lean blow-out limits of non-premixed oxy-methane flames in a porous-plate reactor. <i>Heat and Mass Transfer</i> , 2019 , 55, 3265-3274	2.2	2
184	Experimental and computational study on stability characteristics of hydrogen-enriched oxy-methane premixed flames. <i>Applied Energy</i> , 2019 , 250, 433-443	10.7	18
183	Application of Oxy-fuel Combustion Technology into Conventional Combustors. <i>Green Energy and Technology</i> , 2019 , 43-89	0.6	
182	Modeling of Combustion in Gas Turbines. <i>Green Energy and Technology</i> , 2019 , 193-274	0.6	
181	Experimental and Numerical Investigations of Structure and Stability of Premixed Swirl-Stabilized CH4/O2/CO2 Flames in a Model Gas Turbine Combustor. <i>Energy & Energy & Energ</i>	4.1	4
180	Oxyfuel Combustion for Clean Energy Applications. <i>Green Energy and Technology</i> , 2019 ,	0.6	4
179	Novel Approaches for Clean Combustion in Gas Turbines. <i>Green Energy and Technology</i> , 2019 , 133-192	0.6	
178	A Comprehensive Review of Thermal Enhanced Oil Recovery: Techniques Evaluation. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2019 , 141,	2.6	47
177	Frontiers in combustion techniques and burner designs for emissions control and CO2 capture: A review. <i>International Journal of Energy Research</i> , 2019 , 43, 7790	4.5	14
176	Characteristics of Oxyfuel Combustion in Lean-Premixed Multihole Burners. <i>Energy & Description</i> 2019, 33, 11948-11958	4.1	9
175	Experimental and numerical study of oxy-methane flames in a porous-plate reactor mimicking membrane reactor operation. <i>International Journal of Energy Research</i> , 2019 , 43, 7040	4.5	0
174	Numerical Predictions of Three-Dimensional Unsteady Turbulent Film-Cooling for Trailing Edge of Gas-Turbine Blade Using Large Eddy Simulation. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2019 , 141,	2.6	10
173	Numerical Investigation of Auto-Ignition Characteristics in Microstructured Catalytic Honeycomb Reactor for CH4Air and CH4H2Air Mixtures. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2019 , 141,	2.6	1
172	Applications of OTRs in Gas Turbines and Boilers. <i>Green Energy and Technology</i> , 2019 , 275-368	0.6	
171	Ion Transport Membranes (ITMs) for Oxygen Separation. <i>Green Energy and Technology</i> , 2019 , 91-132	0.6	
170	Static Stability and Combustion Characteristics of Oxy-Propane Flames in a Premixed Fuel-Flexible Swirl Combustor. <i>Energy & Energy & Combustor</i> , 2019, 33, 11996-12007	4.1	3

(2018-2019)

169	A Thermo-Environmental Evaluation of a Modified Combustion Gas Turbine Plant. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2019 , 141,	2.6	4
168	Well-Placement Optimization in Heavy Oil Reservoirs Using a Novel Method of In Situ Steam Generation. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2019 , 141,	2.6	9
167	Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor. <i>Applied Energy</i> , 2018 , 215, 63-74	10.7	29
166	Adsorption characterization and CO2 breakthrough of MWCNT/Mg-MOF-74 and MWCNT/MIL-100(Fe) composites. <i>International Journal of Energy and Environmental Engineering</i> , 2018 , 9, 169-185	4	12
165	Numerical investigation of a hybrid polymeric-ceramic membrane unit for carbon-free oxy-combustion applications. <i>Energy</i> , 2018 , 147, 362-376	7.9	1
164	Review of Novel Combustion Techniques for Clean Power Production in Gas Turbines. <i>Energy & Energy & E</i>	4.1	46
163	Thin film membrane for CO2 separation with sweeping gas method. <i>Energy</i> , 2018 , 144, 619-626	7.9	12
162	An Experimental Study on the Performance of Drag-Reducing Polymers in Single- and Multiphase Horizontal Flow Using Particle Image Velocimetry. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2018 , 140,	2.6	5
161	Modeling Time Variations of Boiler Efficiency. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2018 , 140,	2.6	5
160	Numerical study of radiative heat transfer and effects of thermal boundary conditions on CLC fuel reactor. <i>Heat and Mass Transfer</i> , 2018 , 54, 571-590	2.2	О
159	Combustion behavior and stability map of hydrogen-enriched oxy-methane premixed flames in a model gas turbine combustor. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 16652-16666	6.7	29
158	Experimental and numerical investigation of flow field and oxy-methane combustion characteristics in a low-power porous-plate reactor. <i>Energy</i> , 2018 , 160, 783-795	7.9	2
157	Effects of H2 Enrichment and Inlet Velocity on Stability Limits and Shape of CH4/H2D2/CO2 Flames in a Premixed Swirl Combustor. <i>Energy & Energy & </i>	4.1	16
156	Thermodynamics and emission analysis of a modified Brayton cycle subjected to air cooling and evaporative after cooling. <i>Energy Conversion and Management</i> , 2018 , 174, 322-335	10.6	4
155	Adiabatic Flame Temperature for Controlling the Macrostructures and Stabilization Modes of Premixed Methane Flames in a Model Gas-Turbine Combustor. <i>Energy & Energy & Energy</i>	, 4.1	17
154	Oxy-combustion of liquid fuel in an ion transport membrane reactor. <i>International Journal of Energy and Environmental Engineering</i> , 2018 , 9, 21-37	4	6
153	An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Applied Energy, 2018, 210, 317-326	10.7	93
152	Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application. <i>Applied Energy</i> , 2018 , 229, 828-840	10.7	6

151	Experimental investigation of the stability of a turbulent diffusion flame in a gas turbine combustor. <i>Energy</i> , 2018 , 157, 904-913	7.9	16
150	Effect analysis on the macrostructure and static stability limits of oxy-methane flames in a premixed swirl combustor. <i>Energy</i> , 2018 , 159, 86-96	7.9	15
149	Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia. <i>Applied Energy</i> , 2017 , 185, 1268-1280	10.7	51
148	Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner. <i>Energy</i> , 2017 , 122, 159-167	7.9	25
147	Tuning the Interplay between Selectivity and Permeability of ZIF-7 Mixed Matrix Membranes. <i>ACS Applied Materials & District Membranes</i> , 2017 , 9, 33401-33407	9.5	58
146	Oxy-Combustion of Hydrogen-Enriched Methane: Experimental Measurements and Analysis. <i>Energy & Energy Fuels</i> , 2017 , 31, 2007-2016	4.1	17
145	Structure and Lean Extinction of Premixed Flames Stabilized on Conductive Perforated Plates. <i>Energy & Description</i> , 2017, 31, 1980-1992	4.1	10
144	Oxy-fuel combustion technology: current status, applications, and trends. <i>International Journal of Energy Research</i> , 2017 , 41, 1670-1708	4.5	54
143	The Characteristics of Oxycombustion of Liquid Fuel in a Typical Water-Tube Boiler. <i>Energy & Energy &</i>	4.1	11
142	Hydrogen production, oxygen separation and syngas oxy-combustion inside a water splitting membrane reactor. <i>Renewable Energy</i> , 2017 , 113, 221-234	8.1	8
141	Stability maps of non-premixed methane flames in different oxidizing environments of a gas turbine model combustor. <i>Applied Energy</i> , 2017 , 189, 177-186	10.7	22
140	Investigation of oxygen permeation through disc-shaped BSCF ion transport membrane under reactive conditions. <i>International Journal of Energy Research</i> , 2017 , 41, 1049-1062	4.5	8
139	Characteristic of air separation in hollow-fiber polymeric membrane for oxygen enriched air clean combustion applications. <i>Journal of Cleaner Production</i> , 2017 , 143, 960-972	10.3	11
138	Oxy-fuel Combustion in a 600 MW Gaseous Fuel Tangentially Fired Boiler. <i>Energy & Description</i> 2017, 31, 12540-12551	4.1	4
137	Effects of oxygen carrier mole fraction, velocity distribution on conversion performance using an experimentally validated mathematical model of a CLC fuel reactor. <i>Applied Energy</i> , 2017 , 208, 803-819	10.7	4
136	CFD analysis of CO2 adsorption in different adsorbents including activated carbon, zeolite and Mg-MOF-74. <i>International Journal of Global Warming</i> , 2017 , 13, 57	0.6	2
135	Boiler dynamic control with optimized nitric oxides and efficiency. <i>Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering</i> , 2017 , 231, 778-796	1	1
134	Erosion of a multistage orifice due to liquid-solid flow. <i>Wear</i> , 2017 , 390-391, 270-282	3.5	6

(2016-2017)

133	Thermo-economic analysis of integrated membrane-SMR ITM-oxy-combustion hydrogen and power production plant. <i>Applied Energy</i> , 2017 , 204, 626-640	10.7	8
132	Design of a multi-can carbon-free gas turbine combustor utilizing multiple shell-and-tube OTRs for ZEPP applications. <i>Journal of Natural Gas Science and Engineering</i> , 2017 , 46, 172-187	4.6	6
131	Enhancement of adsorption carbon capture capacity of 13X with optimal incorporation of carbon nanotubes. <i>International Journal of Energy and Environmental Engineering</i> , 2017 , 8, 219-230	4	10
130	Effect of Radiation Heat Transfer on Naturally Driven Flow Through Parallel-Plate Vertical Channel. <i>Arabian Journal for Science and Engineering</i> , 2017 , 42, 1817-1829	2.5	2
129	Numerical investigation of liquid methanol evaporation and oxy-combustion inside a button-cell ITM reactor. <i>Applied Thermal Engineering</i> , 2017 , 112, 378-391	5.8	5
128	Storage stability and high-temperature performance of asphalt binder modified with recycled plastic. <i>Road Materials and Pavement Design</i> , 2017 , 18, 1117-1134	2.6	34
127	Simulation of CO2 adsorption-separation from an N2/CO2 gas mixture in a fixed Mg-MOF-74 column. <i>International Journal of Global Warming</i> , 2017 , 11, 125	0.6	1
126	Effect of microstructure and thickness on oxygen permeation of La2NiO4+Imembranes. <i>Ceramics International</i> , 2016 , 42, 666-672	5.1	9
125	Review on Premixed Combustion Technology: Stability, Emission Control, Applications, and Numerical Case Study. <i>Energy & Double Study</i> . 2016, 30, 9981-10014	4.1	47
124	Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames. <i>Applied Energy</i> , 2016 , 178, 19-28	10.7	29
123	Numerical study of hydrogen-enriched methanellir combustion under ultra-lean conditions. <i>International Journal of Energy Research</i> , 2016 , 40, 743-762	4.5	18
122	Flame macrostructures, combustion instability and extinction strain scaling in swirl-stabilized premixed CH4/H2 combustion. <i>Combustion and Flame</i> , 2016 , 163, 494-507	5.3	105
121	Experimental investigation of partially premixed methaneBir and methaneBxygen flames stabilized over a perforated-plate burner. <i>Applied Energy</i> , 2016 , 169, 126-137	10.7	54
120	Computational Fluid Dynamics (CFD) Investigation of the Oxy-combustion Characteristics of Diesel Oil, Kerosene, and Heavy Oil Liquid Fuels in a Model Furnace. <i>Energy & Energy & Energ</i>	4.1	3
119	Soft Analyzer for Monitoring NOx Emissions From a Gas Turbine Combustor. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2016 , 138,	2.6	5
118	Numerical investigation of syngas oxy-combustion inside a LSCF-6428 oxygen transport membrane reactor. <i>Energy</i> , 2016 , 96, 654-665	7.9	30
117	Investigation of a turbulent premixed combustion flame in a backward-facing step combustor; effect of equivalence ratio. <i>Energy</i> , 2016 , 95, 211-222	7.9	23
116	Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations [A review. <i>Applied Energy</i> , 2016 , 161, 225-255	10.7	348

115	Investigation of performance of fire-tube boilers integrated with ion transport membrane for oxy-fuel combustion. <i>International Journal of Energy Research</i> , 2016 , 40, 1673-1687	4.5	5
114	Characteristics of H 2 -enriched CH 4 O 2 diffusion flames in a swirl-stabilized gas turbine combustor: Experimental and numerical study. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 204	18 ⁶ -204	32 ³
113	Experimental Study on the Effect of Hydrogen Enrichment of Methane on the Stability and Emission of Nonpremixed Swirl Stabilized Combustor. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2015 , 137,	2.6	14
112	Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations. <i>Applied Energy</i> , 2015 , 154, 1020-1047	10.7	136
111	On the Modeling of Steam Methane Reforming. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2015 , 137,	2.6	25
110	Simulation of OxyHuel Combustion of Heavy Oil Fuel in a Model Furnace. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2015 , 137,	2.6	6
109	Experimental and Numerical Investigation of La2NiO4 Membranes for Oxygen Separation: Geometry Optimization and Model Validation. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2015 , 137,	2.6	9
108	Study of Combustion Characteristics of Ethanol at Different Dilution With the Carrier Gas. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2015 , 137,	2.6	6
107	Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor. <i>Energy</i> , 2015 , 84, 600-611	7.9	28
106	Design of an ion transport membrane reactor for application in fire tube boilers. <i>Energy</i> , 2015 , 81, 787-	8 9 .19	29
105	Heat transfer characteristics and pressure drop of the concentric tube equipped with coiled wires for pulsating turbulent flow. <i>Experimental Thermal and Fluid Science</i> , 2015 , 65, 41-51	3	31
104	Performance Comparative Analysis of Three Different CSP Technologies Integrated with Gas Turbine Cogeneration Systems in Saudi Arabia. <i>Energy Procedia</i> , 2015 , 75, 527-532	2.3	4
103	Reducing the flow mal-distribution in a heat exchanger. <i>Computers and Fluids</i> , 2015 , 107, 1-10	2.8	20
102	Numerical predictions of flow boiling characteristics: Current status, model setup and CFD modeling for different non-uniform heating profiles. <i>Applied Thermal Engineering</i> , 2015 , 75, 451-460	5.8	22
101	Evaluation of Mg-MOF-74 for post-combustion carbon dioxide capture through pressure swing adsorption. <i>International Journal of Energy Research</i> , 2015 , 39, 1994-2007	4.5	7
100	Experimental and numerical analysis of oxy-fuel combustion in a porous plate reactor. <i>International Journal of Energy Research</i> , 2015 , 39, 1229-1240	4.5	10
99	Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions. <i>Energy</i> , 2015 , 86, 105-114	7.9	31
98	Investigation of liquid ethanol evaporation and combustion in air and oxygen environments inside a 25 kW vertical reactor. <i>Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy</i> , 2015 , 229, 647-661	1.6	7

(2014-2015)

97	Solid Particle Erosion Downstream of an Orifice. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 2015 , 137,	2.1	14	
96	Correspondence Between Stable Flame Macrostructure and Thermo-acoustic Instability in Premixed Swirl-Stabilized Turbulent Combustion. <i>Journal of Engineering for Gas Turbines and Power</i> , 2015 , 137,	1.7	24	
95	Evaluation of the Accuracy of Selected Syngas Chemical Mechanisms. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2015 , 137,	2.6	10	
94	Development and assessment of integrating parabolic trough collectors with steam generation side of gas turbine cogeneration systems in Saudi Arabia. <i>Applied Energy</i> , 2015 , 141, 131-142	10.7	30	
93	A New Study for Hybrid PV/Wind off-Grid Power Generation Systems with the Comparison of Results from Homer. <i>International Journal of Green Energy</i> , 2015 , 12, 526-542	3	26	
92	Heat Transfer Characteristics in a Double-Pipe Heat Exchanger Equipped with Coiled Circular Wires. <i>Experimental Heat Transfer</i> , 2015 , 28, 531-545	2.4	27	
91	Computational fluid dynamics study of hydrogen generation by low temperature methane reforming in a membrane reactor. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 3158-3169	6.7	37	
90	Evaluation of gas radiation models in CFD modeling of oxy-combustion. <i>Energy Conversion and Management</i> , 2014 , 81, 83-97	10.6	40	
89	Numerical investigations of combustion and emissions of syngas as compared to methane in a 200MW package boiler. <i>Energy Conversion and Management</i> , 2014 , 83, 296-305	10.6	18	
88	Design of an ion transport membrane reactor for gas turbine combustion application. <i>Journal of Membrane Science</i> , 2014 , 450, 60-71	9.6	27	
87	CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion. <i>Energy</i> , 2014 , 77, 932-944	7.9	26	
86	Techno-economic performance analysis of parabolic trough collector in Dhahran, Saudi Arabia. <i>Energy Conversion and Management</i> , 2014 , 86, 622-633	10.6	74	
85	Evaluating the Effect of Hardness on Erosion Characteristics of Aluminum and Steels. <i>Journal of Materials Engineering and Performance</i> , 2014 , 23, 2274-2282	1.6	16	
84	Current status of CHF predictions using CFD modeling technique and review of other techniques especially for non-uniform axial and circumferential heating profiles. <i>Annals of Nuclear Energy</i> , 2014 , 70, 188-207	1.7	10	
83	Experienced EFL teachers[professional practical knowledge, reasoning and classroom decision making in Egypt: views from the inside out. <i>Teacher Development</i> , 2014 , 18, 229-245	0.6	1	
82	Boilers Optimal Control for Maximum Load Change Rate. <i>Journal of Energy Resources Technology, Transactions of the ASME,</i> 2014 , 136,	2.6	9	
81	Experimental Investigation of the Flow Maldistribution Inside an Air-Cooled Heat Exchanger. <i>Arabian Journal for Science and Engineering</i> , 2014 , 39, 8187-8198		1	
80	Numerical investigation of combustion characteristics in an oxygen transport reactor. <i>International Journal of Energy Research</i> , 2014 , 38, 638-651	4.5	10	

79	Characteristics of Oxyfuel and Air Euel Combustion in an Industrial Water Tube Boiler. <i>Heat Transfer Engineering</i> , 2014 , 35, 1394-1404	1.7	9
78	Characteristics of Natural Convection Heat Transfer in an Array of Discrete Heat Sources. Experimental Heat Transfer, 2014 , 27, 91-111	2.4	14
77	Modeling of ion transport reactor for oxy-fuel combustion. <i>International Journal of Energy Research</i> , 2013 , 37, 1265-1279	4.5	15
76	RBF neural network inferential sensor for process emission monitoring. <i>Control Engineering Practice</i> , 2013 , 21, 962-970	3.9	56
75	Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor. <i>Applied Energy</i> , 2013 , 111, 401-415	10.7	90
74	Control of the Boiler Swing Rate for NO Emission Minimization. <i>Energy & Company Fuels</i> , 2013 , 27, 6079-608	864.1	4
73	Numerical investigation of oxygen permeation and methane oxy-combustion in a stagnation flow ion transport membrane reactor. <i>Energy</i> , 2013 , 54, 322-332	7.9	21
72	Modeling of a combined ion transport and porous membrane reactor for oxy-combustion. <i>Journal of Membrane Science</i> , 2013 , 446, 230-243	9.6	29
71	Strain Influence on the Oxygen Electrocatalysis of the (100)-Oriented Epitaxial La2NiO4+IThin Films at Elevated Temperatures. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 18789-18795	3.8	35
70	Oxygen Permeation from Oxygen Ion-Conducting Membranes Coated with Porous Metals or Mixed Ionic and Electronic Conducting Oxides. <i>Journal of the Electrochemical Society</i> , 2013 , 160, E148-E153	3.9	19
69	Modeling of oxygen permeation through a LSCF ion transport membrane. <i>Computers and Fluids</i> , 2013 , 76, 1-10	2.8	19
68	Investigations of oxy-fuel combustion and oxygen permeation in an ITM reactor using a two-step oxy-combustion reaction kinetics model. <i>Journal of Membrane Science</i> , 2013 , 432, 1-12	9.6	31
67	Recent Development in Oxy-Combustion Technology and Its Applications to Gas Turbine Combustors and ITM Reactors. <i>Energy & Damp; Fuels</i> , 2013 , 27, 2-19	4.1	79
66	Influence of Boiler Load Swing Rates on Response of Drum Water Level. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2013 , 135,	2.6	2
65	The Effect of Radiation on Oxy-Fuel Combustion Characteristics in Microchannels. <i>Applied Mechanics and Materials</i> , 2013 , 302, 49-54	0.3	
64	Investigations of an Ion Transport Membrane Reactor Specially Designed for a Power Cycle. <i>Applied Mechanics and Materials</i> , 2013 , 302, 440-446	0.3	7
63	Application of the Critical Heat Flux Look-Up Table to Large Diameter Tubes. <i>Science and Technology of Nuclear Installations</i> , 2013 , 2013, 1-10	0.6	5
62	Investigations of Oxy-Fuel Combustion Characteristics and Oxygen Permeation Process in a Stagnation Flow ITM Reactor. <i>Applied Mechanics and Materials</i> , 2013 , 302, 35-41	0.3	

61	Softsensor for estimation of steam quality in riser tubes of boilers. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2013 , 227, 2337-2347	1.3	2
60	Use of Nanofluids for Enhanced Natural Cooling of Discretely Heated Enclosures. <i>Applied Mechanics and Materials</i> , 2013 , 302, 422-428	0.3	O
59	Enhancing Oxygen Permeation of Electronically Short-Circuited Oxygen-Ion Conductors by Decorating with Mixed Ionic-Electronic Conducting Oxides. <i>ECS Electrochemistry Letters</i> , 2013 , 2, F77-F8	31	22
58	Use of Nanofluids for Improved Natural Cooling of Discretely Heated Cavities. <i>Advances in Mechanical Engineering</i> , 2013 , 5, 383267	1.2	6
57	Influence of Heat Flux and Friction Coefficient on Thermal Stresses in Risers of Drum Boilers under Dynamic Conditions of Steam Demand. <i>Advances in Mechanical Engineering</i> , 2013 , 5, 635140	1.2	1
56	Acoustic Detection of Leaks in Water Pipelines Using Measurements inside Pipe. <i>Journal of Pipeline Systems Engineering and Practice</i> , 2012 , 3, 47-54	1.5	100
55	Characteristics of Oxy-fuel Combustion in an Oxygen Transport Reactor. <i>Energy & Company States</i> , 2012, 26, 4599-4606	4.1	33
54	A Review of Hybrid Solar E ossil Fuel Power Generation Systems and Performance Metrics. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2012 , 134,	2.3	76
53	Computational fluid dynamic simulation of oxyfuel combustion in gas-fired water tube boilers. <i>Computers and Fluids</i> , 2012 , 56, 152-165	2.8	29
52	Computational fluid dynamic simulation of small leaks in water pipelines for direct leak pressure transduction. <i>Computers and Fluids</i> , 2012 , 57, 110-123	2.8	51
51	Turbulent free convection in a vertical converging channel. <i>Heat and Mass Transfer</i> , 2011 , 47, 1427-1443	3 2.2	1
50	Heat transfer characteristics in a sudden expansion pipe equipped with swirl generators. <i>International Journal of Heat and Fluid Flow</i> , 2011 , 32, 352-361	2.4	28
49	A review of recent developments in carbon capture utilizing oxy-fuel combustion in conventional and ion transport membrane systems. <i>International Journal of Energy Research</i> , 2011 , 35, 741-764	4.5	136
48	INFLUENCE OF BOILER SWING RATE ON DYNAMICS OF THERMAL AND FLOW CHARACTERISTICS IN WATER CIRCULATION BOILERS. <i>Computational Thermal Sciences</i> , 2011 , 3, 483-500	1.9	2
47	Influence of Boiler Load Swing Rates on Effective Stresses of Drum Boiler Riser Tubes. <i>Journal of Pressure Vessel Technology, Transactions of the ASME</i> , 2010 , 132,	1.2	2
46	Kinetics and mechanism of periodate oxidation of two ternary nitrilotriacetatochromium(III) complexes involving histidine and aspartate co-ligands. <i>Transition Metal Chemistry</i> , 2010 , 35, 73-80	2.1	16
45	A thermal nonlinear dynamic model for water tube drum boilers. <i>International Journal of Energy Research</i> , 2010 , 34, 20-35	4.5	7
44	Thermal and emission characteristics in a tangentially fired boiler model furnace. <i>International Journal of Energy Research</i> , 2010 , 34, 1164-1182	4.5	10

43	Feasibility of using ground-coupled condensers in A/C systems. <i>Geothermics</i> , 2010 , 39, 201-204	4.3	25
42	Energy, exergy and uncertainty analyses of the thermal response test for a ground heat exchanger. <i>International Journal of Energy Research</i> , 2009 , 33, 582-592	4.5	52
41	UWB binomial curved monopole with binomial curved ground plane. <i>Microwave and Optical Technology Letters</i> , 2009 , 51, 2308-2313	1.2	6
40	Prediction of risersItubes temperature in water tube boilers. <i>Applied Mathematical Modelling</i> , 2009 , 33, 1323-1336	4.5	13
39	Evaluation of flow maldistribution in air-cooled heat exchangers. <i>Computers and Fluids</i> , 2009 , 38, 677-6	90 .8	27
38	Modeling of fluid flow in a tube with a moving indentation. <i>Computers and Fluids</i> , 2009 , 38, 818-829	2.8	3
37	First in situ determination of the ground thermal conductivity for boreholeheat exchanger applications in Saudi Arabia. <i>Renewable Energy</i> , 2009 , 34, 2218-2223	8.1	58
36	Soft sensor for NOx and O2 using dynamic neural networks. <i>Computers and Electrical Engineering</i> , 2009 , 35, 578-586	4.3	52
35	Erosion and penetration rates of a pipe protruded in a sudden contraction. <i>Computers and Fluids</i> , 2008 , 37, 146-160	2.8	22
34	Turbulent natural convection flow in a vertical channel with anti-symmetric heating. <i>Heat and Mass Transfer</i> , 2008 , 44, 1207-1216	2.2	15
33	Correlations of flow maldistribution parameters in an air cooled heat exchanger. <i>International Journal for Numerical Methods in Fluids</i> , 2008 , 56, 143-165	1.9	15
32	Influence of combustion parameters on NOx production in an industrial boiler. <i>Computers and Fluids</i> , 2008 , 37, 12-23	2.8	60
31	Erosion rate correlations of a pipe protruded in an abrupt pipe contraction. <i>International Journal of Impact Engineering</i> , 2007 , 34, 1350-1369	4	33
30	Cutaneous mononuclear cells and eosinophils are significantly increased after warm water challenge in pruritic areas of polycythemia vera. <i>Journal of Cutaneous Pathology</i> , 2007 , 34, 924-9	1.7	13
29	An experimental investigation of heat transfer to pulsating pipe air flow with different amplitudes. <i>Heat and Mass Transfer</i> , 2006 , 42, 625-635	2.2	24
28	Erosion in the tube entrance region of an air-cooled heat exchanger. <i>International Journal of Impact Engineering</i> , 2006 , 32, 1440-1463	4	11
27	Solid-particle erosion in the tube end of the tube sheet of a shell-and-tube heat exchanger. <i>International Journal for Numerical Methods in Fluids</i> , 2006 , 50, 885-909	1.9	12
26	Prediction of Boilers Emission using Polynomial Networks 2006 ,		4

(1995-2005)

2 2 39	34 15 4 15 28
2 2 3 9	15
2 3 9	15
3 9	
	28
2	
	36
9	19
o.6	47
	44
9	91
0.7	17
8	14
8	5
8	21
7	12
9	18
9	26
	5.6 9 5.7 8 8 8

7	Enhanced heat transfer in channels with staggered fins of different spacings. <i>International Journal of Heat and Fluid Flow</i> , 1993 , 14, 185-190	2.4	9	
6	An experimental investigation of heat-transfer and flow in channels with streamwise-periodic flow. <i>Energy</i> , 1992 , 17, 1049-1058	7.9	4	
5	Second-law-based thermodynamic analysis of regenerative-reheat Rankine-cycle power plants. <i>Energy</i> , 1992 , 17, 295-301	7.9	40	
4	Thermodynamic analysis of the performance of cogeneration plants. <i>Energy</i> , 1992 , 17, 485-491	7.9	15	
3	Stability limits and temperature measurements in a tangentially-fired model furnace. <i>Energy</i> , 1992 , 17, 283-294	7.9	7	
2	Shape and stability characteristics of hydrogen-enriched natural-gas oxy-flames in a micromixer burner. <i>Combustion Science and Technology</i> ,1-23	1.5		
1	Stratified and hydrogen combustion techniques for higher turndown and lower emissions in gas turbines. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> ,1-42	2.6	3	