Thierry Vincent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8836681/publications.pdf

Version: 2024-02-01

88 4,350 papers citations

42 64
h-index g-index

90 90 all docs citations

90 times ranked 4139 citing authors

#	Article	IF	CITATIONS
1	Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy, 2005, 76, 131-147.	1.8	161
2	Sulfur derivatives of chitosan for palladium sorption. Reactive and Functional Polymers, 2002, 50, 149-163.	2.0	159
3	A novel algal-based sorbent for heavy metal removal. Chemical Engineering Journal, 2018, 332, 582-595.	6.6	157
4	Chitosan-Supported Palladium Catalyst. 3. Influence of Experimental Parameters on Nitrophenol Degradation. Langmuir, 2003, 19, 8475-8483.	1.6	149
5	Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use. Reactive and Functional Polymers, 2004, 60, 137-149.	2.0	136
6	Chitosan Sorbents for Platinum Sorption from Dilute Solutions. Industrial & Engineering Chemistry Research, 1999, 38, 4011-4022.	1.8	133
7	Treatment of arsenic-containing solutions using chitosan derivatives: uptake mechanism and sorption performances. Water Research, 2002, 36, 3699-3710.	5.3	131
8	Cysteine-Functionalized Chitosan Magnetic Nano-Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms. Nanomaterials, 2015, 5, 154-179.	1.9	111
9	Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: Equilibrium and kinetic studies. Chemical Engineering Journal, 2015, 262, 198-209.	6.6	111
10	Sorption and desorption of uranyl ions by silica gel: pH, particle size and porosity effects. Microporous Materials, 1996, 5, 309-324.	1.6	108
11	Immobilization of Metal Hexacyanoferrate Ion-Exchangers for the Synthesis of Metal Ion Sorbents—A Mini-Review. Molecules, 2015, 20, 20582-20613.	1.7	108
12	Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: synthesis and characterization. Journal of Materials Chemistry A, 2014, 2, 10007.	5.2	101
13	Preparation of Chitosan Gel Beads by Ionotropic Molybdate Gelation. Biomacromolecules, 2001, 2, 1198-1205.	2.6	96
14	Metal ion biosorption on chitosan for the synthesis of advanced materials. Journal of Materials Science, 2014, 49, 5505-5518.	1.7	93
15	Gold Recovery from HCl Solutions using Cyphos ILâ€101 (a Quaternary Phosphonium Ionic Liquid) Immobilized in Biopolymer Capsules. Solvent Extraction and Ion Exchange, 2008, 26, 570-601.	0.8	82
16	Pt recovery using Cyphos IL-101 immobilized in biopolymer capsules. Separation and Purification Technology, 2008, 62, 470-479.	3.9	80
17	Competitive sorption of platinum and palladium on chitosan derivatives. International Journal of Biological Macromolecules, 2001, 28, 401-408.	3.6	79
18	Cr(VI) Extraction Using Aliquat 336 in a Hollow Fiber Module Made of Chitosan. Industrial & Camp; Engineering Chemistry Research, 2001, 40, 1406-1411.	1.8	77

#	Article	lF	Citations
19	Chitosan-Supported Palladium Catalyst. 1. Synthesis Procedure. Industrial & Discrete Regineering Chemistry Research, 2002, 41, 5158-5164.	1.8	76
20	Diethylenetriamine-functionalized chitosan magnetic nano-based particles for the sorption of rare earth metal ions [Nd(III), Dy(III) and Yb(III)]. Cellulose, 2015, 22, 2589-2605.	2.4	76
21	Silver/chitosan/cellulose fibers foam composites: From synthesis to antibacterial properties. Journal of Colloid and Interface Science, 2013, 393, 411-420.	5.0	73
22	Pd(II) and Pt(IV) sorption using alginate and algal-based beads. Chemical Engineering Journal, 2017, 313, 567-579.	6.6	73
23	Amino Acid Functionalized Chitosan Magnetic Nanobased Particles for Uranyl Sorption. Industrial & Lamp; Engineering Chemistry Research, 2015, 54, 12374-12385.	1.8	69
24	Recovering Heavy Metal lons from Complex Solutions Using Polyethylenimine Derivatives Encapsulated in Alginate Matrix. Industrial & Engineering Chemistry Research, 2016, 55, 2461-2470.	1.8	68
25	Immobilization of Cyphos IL-101 in biopolymer capsules for the synthesis of Pd sorbents. Reactive and Functional Polymers, 2008, 68, 1159-1169.	2.0	67
26	Selenium(VI) and copper(II) adsorption using polyethyleneimine-based resins: Effect of glutaraldehyde crosslinking and storage condition. Journal of Hazardous Materials, 2020, 386, 121637.	6.5	67
27	Immobilization of extractants in biopolymer capsules for the synthesis of new resins: a focus on the encapsulation of tetraalkyl phosphonium ionic liquids. Journal of Materials Chemistry, 2009, 19, 8515.	6.7	65
28	Thallium(I) sorption using Prussian blue immobilized in alginate capsules. Carbohydrate Polymers, 2014, 99, 517-526.	5.1	61
29	Immobilization of inorganic ion-exchanger into biopolymer foams – Application to cesium sorption. Chemical Engineering Journal, 2014, 236, 202-211.	6.6	59
30	Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II). International Journal of Molecular Sciences, 2016, 17, 1453.	1.8	59
31	Cellulose and chitosan derivatives for enhanced sorption of erbium(III). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 580-593.	2.3	59
32	Chitin-Prussian blue sponges for Cs(I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions. Journal of Hazardous Materials, 2015, 287, 171-179.	6.5	58
33	Development of a new chitosan/Ni(OH)2-based sorbent for boron removal. Chemical Engineering Journal, 2014, 244, 576-586.	6.6	56
34	Boron recovery from seawater with a new low-cost adsorbent material. Chemical Engineering Journal, 2014, 254, 463-471.	6.6	55
35	Bismuth recovery from acidic solutions using Cyphos IL-101 immobilized in a composite biopolymer matrix. Water Research, 2008, 42, 4019-4031.	5.3	54
36	Palladium and platinum binding on an imidazol containing resin. Hydrometallurgy, 2008, 92, 1-10.	1.8	53

#	Article	IF	Citations
37	Palladium supported on chitosan hollow fiber for nitrotoluene hydrogenation. Journal of Membrane Science, 2009, 329, 30-45.	4.1	52
38	Application of Silica Gel to Metal Ion Sorption: Static and Dynamic Removal of Uranyl Ions. Environmental Technology (United Kingdom), 1995, 16, 101-114.	1.2	49
39	Chitosan-Supported Palladium Catalyst. 5. Nitrophenol Degradation Using Palladium Supported on Hollow Chitosan Fibers. Environmental Science & Environ	4.6	49
40	Dy(III) recovery from dilute solutions using magnetic-chitosan nano-based particles grafted with amino acids. Journal of Materials Science, 2015, 50, 2832-2848.	1.7	46
41	Functionalization of Magnetic Chitosan Particles for the Sorption of U(VI), Cu(II) and Zn(II)—Hydrazide Derivative of Glycine-Grafted Chitosan. Materials, 2017, 10, 539.	1.3	45
42	Chitosan-Supported Palladium Catalyst. II. Chlorophenol Dehalogenation. Industrial & Dehalogenation. In	1.8	44
43	As(V) sorption from aqueous solutions using quaternized algal/polyethyleneimine composite beads. Science of the Total Environment, 2020, 719, 137396.	3.9	44
44	Amidoxime Functionalization of Algal/Polyethyleneimine Beads for the Sorption of Sr(II) from Aqueous Solutions. Molecules, 2019, 24, 3893.	1.7	40
45	Sodium and acidic alginate foams with hierarchical porosity: Preparation, characterization and efficiency as a dye adsorbent. Carbohydrate Polymers, 2017, 178, 78-85.	5.1	35
46	NON-DISPERSIVE LIQUID EXTRACTION OF Cr(VI) BY TBP/ALIQUAT 336 USING CHITOSAN-MADE HOLLOW FIBER. Solvent Extraction and Ion Exchange, 2000, 18, 1241-1260.	0.8	33
47	Encapsulation of ammonium molybdophosphate and zirconium phosphate in alginate matrix for the sorption of rubidium(I). Journal of Colloid and Interface Science, 2013, 409, 141-150.	5.0	33
48	Innovative conditioning of algal-based sorbents: Macro-porous discs for palladium sorption. Chemical Engineering Journal, 2017, 325, 521-532.	6.6	31
49	Palladium supported on alginate/ionic liquid highly porous monoliths: Application to 4-nitroaniline hydrogenation. Applied Catalysis B: Environmental, 2011, 103, 444-452.	10.8	30
50	Quaternization of Composite Algal/PEI Beads for Enhanced Uranium Sorption—Application to Ore Acidic Leachate. Gels, 2020, 6, 12.	2.1	30
51	Chitosan supported palladium catalyst. VI. Nitroaniline degradation. Journal of Applied Polymer Science, 2004, 94, 1634-1642.	1.3	29
52	Chemical modifications of chitosan nano-based magnetic particles for enhanced uranyl sorption. Hydrometallurgy, 2017, 168, 127-134.	1.8	29
53	New highly-percolating alginate-PEI membranes for efficient recovery of chromium from aqueous solutions. Carbohydrate Polymers, 2019, 225, 115177.	5.1	29
54	Modeling competitive sorption of lead and copper ions onto alginate and greenly prepared algal-based beads. Bioresource Technology, 2017, 231, 26-35.	4.8	28

#	Article	IF	CITATIONS
55	Chitosan-supported palladium catalyst. IV. Influence of temperature on nitrophenol degradation and thermodynamic parameters. Journal of Environmental Management, 2004, 71, 15-23.	3.8	27
56	Hydrogenation of nitrotoluene using palladium supported on chitosan hollow fiber: Catalyst characterization and influence of operative parameters studied by experimental design methodology. International Journal of Biological Macromolecules, 2008, 43, 69-78.	3.6	27
57	Palladium and platinum sorption using chitosan-based hydrogels. Adsorption, 2010, 16, 127-139.	1.4	25
58	Oxidation of hydroquinone top-benzoquinone catalyzed by Cu(II) supported on chitosan flakes. Journal of Applied Polymer Science, 2006, 100, 3034-3043.	1.3	24
59	Study of Alginate-Supported Ionic Liquid and Pd Catalysts. Nanomaterials, 2012, 2, 31-53.	1.9	24
60	Palladium Recovery from Dilute Effluents using Biopolymerâ€Immobilized Extractant. Separation Science and Technology, 2006, 41, 2533-2553.	1.3	22
61	A new method for incorporating polyethyleneimine (PEI) in algal beads: High stability as sorbent for palladium recovery and supported catalyst for nitrophenol hydrogenation. Materials Chemistry and Physics, 2019, 221, 144-155.	2.0	21
62	Praseodymium sorption on Laminaria digitata algal beads and foams. Journal of Colloid and Interface Science, 2017, 504, 780-789.	5.0	20
63	Biocomposite films based on poly(lactic acid) and chitosan nanoparticles: Elaboration, microstructural and thermal characterization. Polymer Engineering and Science, 2019, 59, E350.	1.5	20
64	Palladium Recovery by Reactive Precipitation using a Cyanex 301â€Based Stable Emulsion. Separation Science and Technology, 2007, 42, 3517-3536.	1.3	18
65	Highly porous catalytic materials with Pd and ionic liquid supported on chitosan. Journal of Applied Polymer Science, 2013, 128, 3122-3130.	1.3	18
66	A Comparison of Palladium Sorption Using Polyethylenimine Impregnated Alginate-Based and Carrageenan-Based Algal Beads. Applied Sciences (Switzerland), 2018, 8, 264.	1.3	18
67	Boron removal by a composite sorbent: Polyethylenimine/tannic acid derivative immobilized in alginate hydrogel beads. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 359-367.	0.9	17
68	New alginate foams: Boxâ€Behnken design of their manufacturing; fire retardant and thermal insulating properties. Journal of Applied Polymer Science, 2018, 135, 45868.	1.3	16
69	Boosted Cr(VI) sorption coupled reduction from aqueous solution using quaternized algal/alginate@PEI beads. Chemosphere, 2021, 281, 130844.	4.2	15
70	Fire behavior of innovative alginate foams. Carbohydrate Polymers, 2020, 250, 116910.	5.1	14
71	Diffusion of biological molecules through hollow chitosan fibers. Journal of Applied Polymer Science, 2008, 107, 3568-3578.	1.3	12
72	Hybrid macroporous Pd catalytic discs for 4-nitroaniline hydrogenation: Contribution of the alginate-tetraalkylphosphonium ionic liquid support. Journal of Organometallic Chemistry, 2013, 723, 90-97.	0.8	12

#	Article	IF	CITATIONS
73	Investigation of mercury(II) and copper(II) sorption in single and binary systems by alginate/polyethylenimine membranes. Carbohydrate Polymers, 2021, 257, 117588.	5.1	12
74	Environmental Application of Chitosan-Supported Catalysts: Catalytic Hollow Fibers for the Degradation of Phenolic Derivatives. Separation Science and Technology, 2005, 40, 633-657.	1.3	10
75	Tetraalkylphosphonium Ionic Liquid Encapsulation in Alginate Beads for Cd(II) Sorption from HCl Solutions. Solvent Extraction and Ion Exchange, 2014, 32, 543-561.	0.8	10
76	Elaboration of light composite materials based on alginate and algal biomass for flame retardancy: preliminary tests. Journal of Materials Science, 2016, 51, 10035-10047.	1.7	10
77	Algal Foams Applied in Fixed-Bed Process for Lead(II) Removal Using Recirculation or One-Pass Modes. Marine Drugs, 2017, 15, 315.	2.2	10
78	Se(VI) sorption from aqueous solution using alginate/polyethylenimine membranes: Sorption performance and mechanism. International Journal of Biological Macromolecules, 2020, 147, 832-843.	3.6	9
79	Cadmium Recovery from HCl Solutions Using Cyanex 301 and Cyanex 302 Immobilized in Alginate Capsules (Matrix-Type vs. Mononuclear-Type Mode of Encapsulation). Solvent Extraction and Ion Exchange, 2017, 35, 345-362.	0.8	8
80	Palladium nanoparticles supported on amine-functionalized alginate foams for hydrogenation of 3-nitrophenol. Journal of Materials Science, 2020, 55, 2032-2051.	1.7	8
81	Tuning the sorption properties of amidoxime-functionalized algal/polyethyleneimine beads for La(III) and Dy(III) using EDTA: Impact of metal speciation on selective separation. Chemical Engineering Journal, 2022, 431, 133214.	6.6	6
82	Interaction of Chitosan with Metal Ions: From Environmental Applications to the Elaboration of New Materials. Advanced Materials Research, 2009, 71-73, 519-526.	0.3	5
83	Free charge carrier repartition over the surface of photosensitive materials: Why and how to manage?. Russian Journal of General Chemistry, 2008, 78, 1070-1080.	0.3	4
84	Uranium (VI) Sorption Using Functionalized-Chitosan Magnetic Nanobased Particles. Advanced Materials Research, 0, 1130, 499-502.	0.3	4
85	Chitosan-Based Hydrogels for the Recovery of Precious Metals. Advanced Materials Research, 2009, 71-73, 733-736.	0.3	1
86	Biopolymers as Encapsulating Agents for the Immobilization of Prussian Blue and Analogues for the Sorption of Cesium. Advanced Materials Research, 2015, 1130, 507-510.	0.3	1
87	Extractant Immobilization in Alginate Capsules (Matrix- and Mononuclear-Type): Application to Pb(II) Sorption from HCl Solutions. Materials, 2017, 10, 634.	1.3	1
88	Biopolymer Encapsulation of PEI-Derivatives for Heavy Metal Sorption. Advanced Materials Research, 2015, 1130, 529-532.	0.3	0