RafaÅ, KotyÅ,,ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8836598/publications.pdf

Version: 2024-02-01

85	761	13 h-index	27
papers	citations		g-index
85	85	85	595
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Single pixel imaging at high pixel resolutions. Optics Express, 2022, 30, 22730.	1.7	9
2	Differential real-time single-pixel imaging with Fourier domain regularization: applications to VIS-IR imaging and polarization imaging. Optics Express, 2021, 29, 26685.	1.7	10
3	Far-field signature of sub-wavelength microscopic objects. Optics Express, 2020, 28, 36206.	1.7	2
4	Single-pixel imaging with sampling distributed over simplex vertices. Optics Letters, 2019, 44, 1241.	1.7	10
5	Single-pixel video imaging with DCT sampling. , 2019, , .		O
6	Single-pixel imaging with Morlet wavelet correlated random patterns. Scientific Reports, 2018, 8, 466.	1.6	30
7	Real-time single-pixel video imaging with Fourier domain regularization. Optics Express, 2018, 26, 20009.	1.7	54
8	Optical single pixel detection with sampling functions utilizing prior knowledge. , 2017, , .		0
9	Balanced single-pixel camera with noiselet sampling. , 2017, , .		O
10	Compressive phase-only filtering at extreme compression rates. Optics Communications, 2017, 383, 446-452.	1.0	10
11	Efficient adaptation of complex-valued noiselet sensing matrices for compressed single-pixel imaging. Applied Optics, 2016, 55, 5141.	2.1	13
12	Optical single pixel detection for compressive sensing with unitary circulant matrices. , 2016, , .		0
13	Modified noiselet transform and its application to compressive sensing with optical single-pixel detectors. , 2016, , .		0
14	Some considerations on the transmissivity of trirefringent metamaterials. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 116.	0.9	4
15	Multilayer metamaterial absorbers inspired by perfectly matched layers. Optical and Quantum Electronics, 2015, 47, 89-97.	1.5	9
16	Determination of the point spread function of layered metamaterials assisted with the blind deconvolution algorithm. Optical and Quantum Electronics, 2015, 47, 17-26.	1.5	2
17	Perfectly matched layer based multilayer absorbers. Proceedings of SPIE, 2015, , .	0.8	0
18	Asymmetric transmission of transverse magnetic or radially polarized THZ waves through sub-wavelength gratings. , $2015, \ldots$		0

#	Article	IF	Citations
19	Sparse image measurement with an optical single-pixel detector using various schemes of image sampling. , 2015, , .		O
20	Asymmetric transmission of radially polarized THz radiation through a double circular grating. Optics Express, 2014, 22, 30547.	1.7	4
21	Layered and core-shell uniaxial absorbers. , 2014, , .		0
22	Layered and core-shell uniaxial absorbers. , 2014, , .		0
23	Engineering the point spread function of layered metamaterials. Opto-electronics Review, 2013, 21, .	2.4	4
24	Asymmetric transmission of terahertz radiation through a double grating. Optics Letters, 2013, 38, 839.	1.7	97
25	Broadband asymmetric transmission of THz radiation through double metallic gratings. , 2013, , .		0
26	Linear sub-diffraction spatial filtering with plasmonic materials. , 2013, , .		1
27	Metal-dielectric photonic devices for spatial filtering and image contrast enhancement. , 2013, , .		0
28	Spatial filtering with rough metal-dielectric layered metamaterials. Photonics Letters of Poland, 2013, 5, .	0.2	0
29	Asymmetric transmission through diffraction-free optically linear metamaterials. , 2012, , .		0
30	Metal-dielectric layered metamaterials for sub-diffraction spatial filtering of the optical wavefront. , 2012, , .		0
31	Sub-diffraction linear spatial filtering with layered metamaterials. , 2012, , .		0
32	Asymmetric transmission through a structure consisting of two photonic bandgap materials. , 2012, , .		0
33	Two-dimensional point spread matrix of layered metal–dielectric imaging elements. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 111.	0.8	17
34	Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers. Applied Physics A: Materials Science and Processing, 2011, 103, 905-909.	1.1	29
35	Effect of surface roughness on subwavelength imaging with layered metamaterial optical elements. , 2011, , .		2
36	Slanted layered superlenses for subwavelength light manipulation. , 2011, , .		0

#	Article	IF	CITATIONS
37	Optimized low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range. Journal of Applied Physics, $2011, 109, \ldots$	1.1	23
38	Numerical analysis of transmission through a sub-wavelength metallic aperture or grating at visible and Terahertz wavelengths. , $2011, \ldots$		0
39	Sub-wavelength imaging using silver-dielectric metamaterial layered prism. , 2010, , .		1
40	Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers. Opto-electronics Review, 2010, 18, .	2.4	8
41	Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies. Opto-electronics Review, 2010, 18, .	2.4	14
42	Transparency and super-resolution in metal-dielectric layered structures. Proceedings of SPIE, 2010, , .	0.8	0
43	Imaging in the visible wavelength range through anisotropic layered flat lens operating in the canalization regime. , 2010 , , .		1
44	Influence of fabrication accuracies of metal-dielectric layered flat lenses on their imaging properties. , 2010, , .		0
45	Multiscale analysis of subwavelength imaging with metal-dielectric multilayers. Optics Letters, 2010, 35, 1133.	1.7	37
46	Optimisation of transmission properties and subwavelength imaging of silver-dielectric layered structures operating in the canalization regime. , 2009, , .		1
47	Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes. Journal of Optics, 2009, 11, 015001.	1.5	36
48	Super-resolving metallo-dielectric flat lens. Proceedings of SPIE, 2009, , .	0.8	0
49	Imaging in the visible wavelength range through anisotropic layered flat lens operating in the canalization regime. , 2009, , .		0
50	Metal-dielectric superlens with ultra-flat phase of the modulation transfer function. , 2009, , .		0
51	Light transformations in metallo-dielectric nanolayers. , 2008, , .		0
52	Finite element analysis of waveguide mode coupling through a sub-structured metallic flat lens. Proceedings of SPIE, 2008, , .	0.8	1
53	Analysis of two-dimensional polarisation-coupled impulse response in multilayered metallic flat lens. , 2008, , .		4
54	Trade-off analysis of superresolution and transparency in metal-dielectric nanolayered superlens. Proceedings of SPIE, 2008, , .	0.8	0

#	Article	IF	Citations
55	Interplay of spatial filtering and dispersive effects in metamaterial superlenses. , 2008, , .		О
56	<title>Spatial filtering of the light beam with a layered silver flat lens</title> ., 2008,,.		0
57	Plane-Wave Admittance Method and its Applications to Modelling Photonic Crystal Structures. , 2008, , 253-277.		1
58	Filtering properties of the LHM-RHM layered structures. , 2007, , .		2
59	Comments on "Thermooptical Sensitivity Analysis of Highly Birefringent Polarimetric Sensing Photonic Crystal Fibers With Elliptically Elongated Veins― IEEE Photonics Technology Letters, 2007, 19, 795-796.	1.3	2
60	Waveguiding losses of micro-structured fibresâ€"plane wave method revisited. Optical and Quantum Electronics, 2007, 39, 469-479.	1.5	12
61	Dynamic characteristics of nonlinear Bragg gratings in photonic crystal fibres. Optical and Quantum Electronics, 2007, 39, 455-467.	1.5	2
62	Comparison of different methods for rigorous modeling of photonic crystal fibers. Optics Express, 2006, 14, 5699.	1.7	34
63	Numerical Analysis of Highly Birefringent Photonic Crystal Fibers with Bragg Reflectors. Optical and Quantum Electronics, 2006, 38, 535-545.	1.5	5
64	Bandgap tuning through material anisotropy as a novel physical mechanism for liquid crystal filled photonic crystal fiber sensors. , 2005, , .		0
65	Analysis of translation invariant metallic or double-negative material structures. , 2005, , .		0
66	Analysis of data from optical sensors with composite filtering. , 2005, 5855, 824.		0
67	Modeling of the polarization behavior of elliptical surface-relief VCSELs. Optical and Quantum Electronics, 2005, 37, 241-252.	1.5	13
68	Photonic crystal fibers with material anisotropy. Optical and Quantum Electronics, 2005, 37, 253-264.	1.5	13
69	Sensitivity of highly birefringent photonic bandgap fibers to temperature and strain. , 2005, , .		2
70	Phase and group modal birefringence of triple-defect photonic crystal fibres. Journal of Optics, 2005, 7, 763-766.	1.5	26
71	Plane Wave Admittance Method - a novel approach for determining the electromagnetic modes in photonic structures. Optics Express, 2005, 13, 3196.	1.7	140
72	<title>Birefringence in photonic crystal fibers: a numerical approach based on the plane-wave method</title> ., 2004, 5576, 54.		2

#	Article	IF	CITATIONS
73	<title>Photonic crystal fibers: state of the art and future perspectives</title> ., 2004, , .		5
74	<title>Multiparameter sensitivities of birefringent photonic crystal fiber</title> ., 2004,,.		3
7 5	<title>Light propagation in birefringent doped-core holey fibers</title> ., 2004, , .		O
76	<title>Influence of information content of partially occluded images on the results of recognition</title> ., 2000, 4113, 187.		0
77	Normalization of correlation filters based on the Hoelder's inequality. , 1998, 3490, 195.		4
78	Dual nonlinear correlator based on computer controlled joint transform processor: Digital analysis and optical results. Journal of Modern Optics, 1997, 44, 1535-1552.	0.6	28
79	Comparison of the performance of linear and nonlinear filters in the presence of nonergodic noise. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1997, 14, 2162.	0.8	10
80	Optical correlator with dual nonlinearity. Journal of Modern Optics, 1996, 43, 295-310.	0.6	14
81	Simulation of photonic crystal diode lasers with plane-wave admittance method., 0,,.		O
82	Sensitivity of holey fiber based sensors. , 0, , .		9
83	Modeling Bragg gratings in doped-core holey fibers. , 0, , .		O
84	Photonic band structure of 2D lattices with left-handed materials. , 0, , .		0
85	Optical correlator with dual nonlinearity. , 0, .		1