Stéphane Charlot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8836327/publications.pdf

Version: 2024-02-01

88 papers 28,893 citations

50 h-index 85 g-index

88 all docs 88 docs citations

88 times ranked 7722 citing authors

#	Article	IF	Citations
1	The Near-Infrared Spectrograph (NIRSpec) on the <i>James Webb</i> Space Telescope. Astronomy and Astrophysics, 2022, 661, A82.	5.1	39
2	Post-starburst Galaxies in the Centers of Intermediate-redshift Clusters. Astrophysical Journal, 2022, 930, 43.	4.5	22
3	Direct Constraints on the Extremely Metal-poor Massive Stars Underlying Nebular C iv Emission from Ultra-deep HST/COS Ultraviolet Spectroscopy. Astrophysical Journal, 2022, 930, 105.	4.5	19
4	The ionizing properties of two bright Ly <i>\hat{l}±</i> emitters in the Bremer Deep Field reionized bubble at <i>z</i> = 7. Astronomy and Astrophysics, 2022, 662, A115.	5.1	12
5	CLASSY III. The Properties of Starburst-driven Warm Ionized Outflows*. Astrophysical Journal, 2022, 933, 222.	4.5	28
6	MMT spectroscopy of Lyman-alpha at $\langle i\rangle z\langle i\rangle \hat{A} \hat{a}\% f$ 7: evidence for accelerated reionization around massive galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 6044-6063.	4.4	50
7	Ultrafaint [C ii] Emission in a Redshift = 2 Gravitationally Lensed Metal-poor Dwarf Galaxy. Astrophysical Journal, 2021, 909, 130.	4.5	4
8	Ultraviolet spectra of extreme nearby star-forming regions: Evidence for an overabundance of very massive stars. Monthly Notices of the Royal Astronomical Society, 2021, 503, 6112-6135.	4.4	27
9	FirstLight IV: diversity in sub-L* galaxies at cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4472-4480.	4.4	4
10	Investigating Clumpy Galaxies in the Sloan Digital Sky Survey Stripe 82 Using the Galaxy Zoo. Astrophysical Journal, 2021, 912, 49.	4.5	7
11	Constraints on the dust extinction law of the Galaxy with <i>Swift</i> /UVOT, <i>Gaia</i> , and <i>2MASS</i> . Monthly Notices of the Royal Astronomical Society, 2021, 505, 283-292.	4.4	2
12	Rest-frame UV spectroscopy of extreme [O <scp>iii < /scp>] emitters at 1.3 & amp;lt; <i>z < /i> & amp;lt; 3.7: toward a high-redshift UV reference sample for <i>JWST < /i> Monthly Notices of the Royal Astronomical Society, 2021, 501, 3238-3257.</i></i></scp>	4.4	34
13	Synthetic photometry of OB star clusters with stochastically sampled IMFs: analysis of models and <i>HST</i> observations. Monthly Notices of the Royal Astronomical Society, 2021, 509, 522-549.	4.4	8
14	Spectroscopy of an extreme [$Oaema(scp)ii(scp)$] emitting active galactic nucleus at $aema(scp)ii(scp)$] emitting active galactic nucleus at $aema(scp)ii(scp)$] emitting active galactic nucleus at $aema(scp)ii(scp)ii(scp)$] emitting active galactic nucleus at $aema(scp)ii(s$	4.4	4
15	To use or not to use synthetic stellar spectra in population synthesis models?. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2025-2042.	4.4	26
16	A quantitative demonstration that stellar feedback locally regulates galaxy growth. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1172-1187.	4.4	4
17	Stars and gas in the most metal-poor galaxies $\hat{a}\in$ I. COS and MUSE observations of SBS 0335 \hat{a} 052E. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2908-2927.	4.4	20
18	High-mass X-ray binaries in nearby metal-poor galaxies: on the contribution to nebular He <scp>ii</scp> emission. Monthly Notices of the Royal Astronomical Society, 2020, 494, 941-957.	4.4	44

#	Article	IF	Citations
19	High-resolution Spectral Line Indices Useful for the Analysis of Stellar Populations. Astrophysical Journal Letters, 2020, 889, L31.	8.3	4
20	RELICS: spectroscopy of gravitationally lensed <i>z</i> â‰f 2 reionization-era analogues and implications for C <scp>iii</scp>] detections at <i>z</i> > 6. Monthly Notices of the Royal Astronomical Society, 2020, 494, 719-735.	4.4	18
21	Early Low-mass Galaxies and Star-cluster Candidates at zÂâ^1⁄4Â6–9 Identified by the Gravitational-lensing Technique and Deep Optical/Near-infrared Imaging. Astrophysical Journal, 2020, 893, 60.	4.5	50
22	The [O <scp>iii</scp>]+HÂβ equivalent width distribution at <i>z</i> â‰f 7: implications for the contributio of galaxies to reionization. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5229-5248.	n 4.4	106
23	How robustly can we constrain the low-mass end of the $\langle i \rangle z \langle i \rangle \hat{A} \hat{a}^1 / 4 \hat{a} \hat{a}^2 \rangle$ stellar mass function? The limits of lensing models and stellar population assumptions in the $\langle i \rangle$ Hubble Frontier Fields $\langle i \rangle$. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1568-1590.	4.4	26
24	Spatially Resolved Analysis of Neutral Winds, Stars, and Ionized Gas Kinematics with MEGARA/GTC: New Insights on the Nearby Galaxy UGC 10205. Astrophysical Journal, 2020, 890, 5.	4.5	6
25	Extremely metal-poor galaxies with HST/COS: laboratories for models of low-metallicity massive stars and high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3492-3506.	4.4	54
26	Synthetic nebular emission from massive galaxies – II. Ultraviolet-line diagnostics of dominant ionizing sources. Monthly Notices of the Royal Astronomical Society, 2019, 487, 333-353.	4.4	45
27	Detection of the self-regulation of star formation in galaxy discs. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 487, L61-L66.	3.3	9
28	MMT/MMIRS spectroscopy of $z=1.3$ - 2.4 extreme [Oâ \in %iii] emitters: implications for galaxies in the reionization era. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2572-2594.	4.4	100
29	Simulating and interpreting deep observations in the Hubble Ultra Deep Field with the∢i>JWST∢/i>/NIRSpec low-resolution †prism'. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2621-2640.	4.4	29
30	The Distribution and Ages of Star Clusters in the Small Magellanic Cloud: Constraints on the Interaction History of the Magellanic Clouds. Astrophysical Journal, 2018, 853, 104.	4.5	17
31	A Two-dimensional Spectroscopic Study of Emission-line Galaxies in the Faint Infrared Grism Survey (FIGS). I. Detection Method and Catalog. Astrophysical Journal, 2018, 868, 61.	4.5	11
32	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2018, 617, A62.	5.1	30
33	SILVERRUSH. V. Census of Lyl±, [O iii] l̂»5007, Hl±, and [C ii] 158 l⁴/4m Line Emission with â^1/41000 LAEs at zÂ=Â4 Revealed with Subaru/HSC. Astrophysical Journal, 2018, 859, 84.	ŀ.9–7.0 4 . 5	102
34	The <i>JWST</i> Extragalactic Mock Catalog: Modeling Galaxy Populations from the UV through the Near-IR over 13 Billion Years of Cosmic History. Astrophysical Journal, Supplement Series, 2018, 236, 33.	7.7	106
35	Physical properties and H-ionizing-photon production rates of extreme nearby star-forming regions. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3264-3273.	4.4	61
36	Ultraviolet spectra of extreme nearby star-forming regions – approaching a local reference sample for JWST. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2608-2632.	4.4	129

#	Article	IF	CITATIONS
37	A Novel Method to Automatically Detect and Measure the Ages of Star Clusters in Nearby Galaxies: Application to the Large Magellanic Cloud. Astrophysical Journal, 2017, 845, 56.	4.5	13
38	GASP. III. JO36: A Case of Multiple Environmental Effects at Play?. Astrophysical Journal, 2017, 848, 132.	4.5	66
39	Synthetic nebular emission from massive galaxies – I: origin of the cosmic evolution of optical emission-line ratios. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2468-2495.	4.4	69
40	Lyα and C iii] emission in <i>>z</i> = 7–9 Galaxies: accelerated reionization around luminous star-forming systems?. Monthly Notices of the Royal Astronomical Society, 2017, 464, 469-479.	4.4	264
41	Ultraviolet/Optical Emission of the Ionized Gas in AGN: Diagnostics of the Ionizing Source and Gas Properties. Frontiers in Astronomy and Space Sciences, 2017, 4, .	2.8	1
42	THE VLT LEGA-C SPECTROSCOPIC SURVEY: THE PHYSICS OF GALAXIES AT A LOOKBACK TIME OF 7 Gyr. Astrophysical Journal, Supplement Series, 2016, 223, 29.	7.7	133
43	GALEX–SDSS–WISE LEGACY CATALOG (GSWLC): STAR FORMATION RATES, STELLAR MASSES, AND DUST ATTENUATIONS OF 700,000 LOW-REDSHIFT GALAXIES. Astrophysical Journal, Supplement Series, 2016, 227, 2.	7.7	246
44	Modelling and interpreting spectral energy distributions of galaxies with beagle. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1415-1443.	4.4	246
45	Modelling the nebular emission from primeval to present-day star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1757-1774.	4.4	203
46	Spectroscopic detections of C iii] λ1909 Å at z ≃ 6–7: a new probe of early star-forming galaxies and cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1846-1855.	4.4	157
47	SHARDS: A GLOBAL VIEW OF THE STAR FORMATION ACTIVITY AT <i>z</i> å^¹¼ 0.84 and <i>z</i> å^¹¼ 1.23. Astrophysical Journal, 2015, 812, 155.	4.5	16
48	Spectroscopic detection of C iv î»1548 in a galaxy at <i>z</i> Â=Â7.045: implications for the ionizing spectra of reionization-era galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1393-1403.	4.4	191
49	THE STELLAR INITIAL MASS FUNCTION AT 0.9 < <i>z</i> < 1.5. Astrophysical Journal Letters, 2015, 798, L4.	8.3	23
50	On the importance of using appropriate spectral models to derive physical properties of galaxies at 0.7Â<ÂzÂ<Â2.8. Monthly Notices of the Royal Astronomical Society, 2015, 447, 786-805.	4.4	61
51	Ultraviolet emission lines in young low-mass galaxies at z $3\% f$ 2: physical properties and implications for studies at z $4\% f$ 3. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3200-3220.	4.4	173
52	A CRITICAL LOOK AT THE MASS-METALLICITY-STAR FORMATION RATE RELATION IN THE LOCAL UNIVERSE. I. AN IMPROVED ANALYSIS FRAMEWORK AND CONFOUNDING SYSTEMATICS. Astrophysical Journal, 2014, 797, 126.	4.5	101
53	ACTIVE GALACTIC NUCLEI EMISSION LINE DIAGNOSTICS AND THE MASS-METALLICITY RELATION UP TO REDSHIFT <i>>z</i> >â^1/4 2: THE IMPACT OF SELECTION EFFECTS AND EVOLUTION. Astrophysical Journal, 2014, 788, 88.	4.5	147
54	Near-infrared spectroscopy of post-starburst galaxies: a limited impact of TP-AGB stars on galaxy spectral energy distributionsa~ Monthly Notices of the Royal Astronomical Society, 2013, 428, 1479-1497.	4.4	87

#	Article	IF	CITATIONS
55	NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN. Astrophysical Journal, 2013, 768, 71.	4.5	428
56	EVOLUTION OF THE SIZES OF GALAXIES OVER 7 & lt; < i>> z < /i> & lt; 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN. Astrophysical Journal, 2013, 777, 155.	4.5	122
57	THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5-12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN. Astrophysical Journal Letters, 2013, 763, L7.	8.3	397
58	SHARDS: AN OPTICAL SPECTRO-PHOTOMETRIC SURVEY OF DISTANT GALAXIES. Astrophysical Journal, 2013, 762, 46.	4.5	95
59	THE RISE AND FALL OF THE STAR FORMATION HISTORIES OF BLUE GALAXIES AT REDSHIFTS 0.2 < <i>z</i> < 1.4. Astrophysical Journal Letters, 2013, 762, L15.	8.3	68
60	The LF of TP-AGB stars in the LMC/SMC. Proceedings of the International Astronomical Union, 2012, 8, 282-285.	0.0	0
61	Relative merits of different types of rest-frame optical observations to constrain galaxy physical parameters. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2002-2024.	4.4	107
62	Empirical determination of the shape of dust attenuation curves in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1760-1786.	4.4	172
63	Tracers of stellar mass loss - I. Optical and near-IR colours and surface brightness fluctuations. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1213-1238.	4.4	25
64	MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT <i>z</i> < 1.4. Astrophysical Journal, 2009, 700, 161-182.	4.5	131
65	Post-starburst galaxies: more than just an interesting curiosity. Monthly Notices of the Royal Astronomical Society, 2009, 395, 144-159.	4.4	164
66	Resolved maps of stellar mass and SED of galaxies from optical/NIR imaging and SPS models. Proceedings of the International Astronomical Union, 2009, 5, 89-92.	0.0	1
67	Concluding Remarks: Recent Achievements and Future Challenges in Stellar Population Studies. Proceedings of the International Astronomical Union, 2009, 5, 303-304.	0.0	0
68	New insights into the stellar content and physical conditions of star-forming galaxies at $z=2\hat{a}\in$ from spectral modelling. Monthly Notices of the Royal Astronomical Society, 2008, 385, 769-782.	4.4	201
69	A simple model to interpret the ultraviolet, optical and infrared emission from galaxies. Monthly Notices of the Royal Astronomical Society, 2008, 388, 1595-1617.	4.4	968
70	The cosmic evolution of metallicity from the SDSS fossil record. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1117-1126.	4.4	147
71	Ongoing Formation of Bulges and Black Holes in the Local Universe: New Insights from <i>GALEX</i> Astrophysical Journal, Supplement Series, 2007, 173, 357-376.	7.7	93
72	UV Star Formation Rates in the Local Universe. Astrophysical Journal, Supplement Series, 2007, 173, 267-292.	7.7	1,344

#	Article	IF	Citations
73	Bursty stellar populations and obscured active galactic nuclei in galaxy bulges. Monthly Notices of the Royal Astronomical Society, 2007, 381, 543-572.	4.4	160
74	The Diverse Properties of the Most Ultravioletâ€Luminous Galaxies Discovered by <i>GALEX</i> Astrophysical Journal, Supplement Series, 2007, 173, 441-456.	7.7	106
75	Ages and metallicities of early-type galaxies in the Sloan Digital Sky Survey: new insight into the physical origin of the colour-magnitude and the Mg2-ÏfV relations. Monthly Notices of the Royal Astronomical Society, 2006, 370, 1106-1124.	4.4	313
76	New Constraints on the Star Formation Histories and Dust Attenuation of Galaxies in the Local Universe from GALEX. Astrophysical Journal, 2005, 619, L39-L42.	4.5	157
77	The Properties of Ultraviolet-luminous Galaxies at the Current Epoch. Astrophysical Journal, 2005, 619, L35-L38.	4.5	140
78	The ages and metallicities of galaxies in the local universe. Monthly Notices of the Royal Astronomical Society, 2005, 362, 41-58.	4.4	894
79	The Origin of the Massâ€Metallicity Relation: Insights from 53,000 Starâ€forming Galaxies in the Sloan Digital Sky Survey. Astrophysical Journal, 2004, 613, 898-913.	4. 5	2,784
80	Stellar masses and star formation histories for 105galaxies from the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2003, 341, 33-53.	4.4	1,892
81	Stellar population synthesis at the resolution of 2003. Monthly Notices of the Royal Astronomical Society, 2003, 344, 1000-1028.	4.4	8,115
82	The host galaxies of active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2003, 346, 1055-1077.	4.4	2,990
83	A Simple Model for the Absorption of Starlight by Dust in Galaxies. Astrophysical Journal, 2000, 539, 718-731.	4.5	1,222
84	Uncertainties in the Modeling of Old Stellar Populations. Astrophysical Journal, 1996, 457, 625.	4.5	217
85	Spectral evolution of stellar populations using isochrone synthesis. Astrophysical Journal, 1993, 405, 538.	4.5	1,511
86	Lyman-Alpha Emission from Galaxies. Astrophysical Journal, 1993, 415, 580.	4.5	270
87	Stellar population synthesis revisited. Astrophysical Journal, 1991, 367, 126.	4.5	200
88	A Peculiar TypeÂll QSO Identified via Broad-band Detection of Extreme Nebular Line Emission. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	5