Gerardo Arceo-GÃ³mez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8836293/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in coâ€flowering communities. American Journal of Botany, 2013, 100, 1061-1070.	1.7	180
2	Widespread vulnerability of flowering plant seed production to pollinator declines. Science Advances, 2021, 7, eabd3524.	10.3	92
3	Heterospecific pollen deposition: does diversity alter the consequences?. New Phytologist, 2011, 192, 738-746.	7.3	87
4	Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nature Communications, 2020, 11, 3999.	12.8	84
5	Patterns of among―and withinâ€species variation in heterospecific pollen receipt: The importance of ecological generalization. American Journal of Botany, 2016, 103, 396-407.	1.7	60
6	Pollinators contribute to the maintenance of flowering plant diversity. Nature, 2021, 597, 688-692.	27.8	57
7	Among-species differences in pollen quality and quantity limitation: implications for endemics in biodiverse hotspots. Annals of Botany, 2013, 112, 1461-1469.	2.9	47
8	Invasion status and phylogenetic relatedness predict cost of heterospecific pollen receipt: implications for native biodiversity decline. Journal of Ecology, 2016, 104, 1003-1008.	4.0	47
9	Plant–flower visitor networks in a serpentine metacommunity: assessing traits associated with keystone plant species. Arthropod-Plant Interactions, 2015, 9, 9-21.	1.1	46
10	Interactive effects between donor and recipient species mediate fitness costs of heterospecific pollen receipt in a co-flowering community. Oecologia, 2019, 189, 1041-1047.	2.0	37
11	Impacts of plant invasions in native plant–pollinator networks. New Phytologist, 2021, 230, 2117-2128.	7.3	37
12	Coflowering Community Context Influences Female Fitness and Alters the Adaptive Value of Flower Longevity in <i>Mimulus guttatus</i> . American Naturalist, 2014, 183, E50-E63.	2.1	36
13	Pollen on stigmas as proxies of pollinator competition and facilitation: complexities, caveats and future directions. Annals of Botany, 2020, 125, 1003-1012.	2.9	34
14	Can plants evolve tolerance mechanisms to heterospecific pollen effects? An experimental test of the adaptive potential in <i>Clarkia</i> species. Oikos, 2016, 125, 718-725.	2.7	31
15	Taxonomic and functional diversity of the coâ€flowering community differentially affect <i>Cakile edentula</i> pollination at different spatial scales. Journal of Ecology, 2019, 107, 2167-2181.	4.0	31
16	Heterospecific pollen receipt affects self pollen more than outcross pollen: implications for mixedâ€mating plants. Ecology, 2014, 95, 2946-2952.	3.2	30
17	Global geographic patterns of heterospecific pollen receipt help uncover potential ecological and evolutionary impacts across plant communities worldwide. Scientific Reports, 2019, 9, 8086.	3.3	28
18	Spatial patterns of species diversity in sand dune plant communities in Yucatan, Mexico: importance of invasive species for species dominance patterns. Plant Ecology and Diversity, 2018, 11, 157-172.	2.4	27

#	Article	IF	CITATIONS
19	Patterns of pollen quantity and quality limitation of pre‣ygotic reproduction in <i>Mimulus guttatus</i> vary with coâ€flowering community context. Oikos, 2014, 123, 1261-1269.	2.7	26
20	Diversity and composition of pollen loads carried by pollinators are primarily driven by insect traits, not floral community characteristics. Oecologia, 2021, 196, 131-143.	2.0	25
21	Pollen transfer networks reveal alien species as main heterospecific pollen donors with fitness consequences for natives. Journal of Ecology, 2021, 109, 939-951.	4.0	24
22	The role of alien species on plant-floral visitor network structure in invaded communities. PLoS ONE, 2019, 14, e0218227.	2.5	22
23	Plant–pollinator network structural properties differentially affect pollen transfer dynamics and pollination success. Oecologia, 2020, 192, 1037-1045.	2.0	22
24	A Network Approach to Understanding Patterns of Coflowering in Diverse Communities. International Journal of Plant Sciences, 2018, 179, 569-582.	1.3	21
25	Patterns and effects of heterospecific pollen transfer between an invasive and two native plant species: the importance of pollen arrival time to the stigma. American Journal of Botany, 2019, 106, 1308-1315.	1.7	21
26	Plant traits moderate pollen limitation of introduced and native plants: a phylogenetic metaâ€analysis of global scale. New Phytologist, 2019, 223, 2063-2075.	7.3	20
27	Variation in sampling effort affects the observed richness of plant–plant interactions via heterospecific pollen transfer: implications for interpretation of pollen transfer networks. American Journal of Botany, 2018, 105, 1601-1608.	1.7	18
28	Integrating floral trait and flowering time distribution patterns help reveal a more dynamic nature of coâ€flowering community assembly processes. Journal of Ecology, 2020, 108, 2221-2231.	4.0	18
29	Is heterospecific pollen receipt the missing link in understanding pollen limitation of plant reproduction?. American Journal of Botany, 2020, 107, 845-847.	1.7	18
30	Effects of invasive Cirsium arvense on pollination in a southern Appalachian floral community vary with spatial scale and floral symmetry. Biological Invasions, 2020, 22, 783-797.	2.4	13
31	Negative effects of heterospecific pollen receipt vary with abiotic conditions: ecological and evolutionary implications. Annals of Botany, 2015, 116, 789-795.	2.9	10
32	Patterns of phylogenetic community structure of sand dune plant communities in the Yucatan Peninsula: the role of deterministic and stochastic processes in community assembly. Plant Ecology and Diversity, 2018, 11, 515-526.	2.4	10
33	Effects of heterospecific pollen from a windâ€pollinated and pesticideâ€ŧreated plant on reproductive success of an insectâ€pollinated species. American Journal of Botany, 2018, 105, 836-841.	1.7	9
34	Delimiting plant diversity that is functionally related via interactions with diurnal pollinators: An expanded use of rarefaction curves. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 232, 56-62.	1.2	8
35	Spatial variation in the intensity of interactions via heterospecific pollen transfer may contribute to local and global patterns of plant diversity. Annals of Botany, 2021, 128, 383-394.	2.9	8
36	Flowering overlap and floral trait similarity help explain the structure of pollination networks. Journal of Ecology, 2022, 110, 1790-1801.	4.0	8

#	Article	IF	CITATIONS
37	Floral Color Properties of Serpentine Seep Assemblages Depend on Community Size and Species Richness. Frontiers in Plant Science, 2020, 11, 602951.	3.6	5
38	Plant–floral visitor network structure in a smallholder Cucurbitaceae agricultural system in the tropics: implications for the extinction of main floral visitors. Arthropod-Plant Interactions, 2017, 11, 731-740.	1.1	4
39	Pollen transport networks reveal highly diverse and temporally stable plant–pollinator interactions in an Appalachian floral community. AoB PLANTS, 2021, 13, plab062.	2.3	4
40	OUP accepted manuscript. AoB PLANTS, 2021, 13, plab069.	2.3	0