Cynthia K Larive

List of Publications by Citations

Source: https://exaly.com/author-pdf/8836249/cynthia-k-larive-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

164 papers

5,705 citations

41 h-index

67 g-index

176 ext. papers

6,163 ext. citations

5.7 avg, IF

5.66 L-index

#	Paper	IF	Citations
164	Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. <i>Plant Journal</i> , 2008 , 56, 743-55	6.9	268
163	Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. <i>Environmental Science & Environmental Science & E</i>	10.3	267
162	Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. <i>Science</i> , 2004 , 305, 1612-5	33.3	257
161	NMR spectroscopy for metabolomics and metabolic profiling. <i>Analytical Chemistry</i> , 2015 , 87, 133-46	7.8	166
160	Quantitative NMR for bioanalysis and metabolomics. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 404, 1165-79	4.4	141
159	Diffusion Coefficients and Polydispersities of the Suwannee River Fulvic Acid: Comparison of Fluorescence Correlation Spectroscopy, Pulsed-Field Gradient Nuclear Magnetic Resonance, and Flow Field-Flow Fractionation. <i>Environmental Science & Enp.; Technology</i> , 2000 , 34, 3508-3513	10.3	133
158	Arabidopsis P-glycoprotein19 participates in the inhibition of gravitropism by gravacin. <i>Chemistry and Biology</i> , 2007 , 14, 1366-76		117
157	Factors Affecting the Fate of Ciprofloxacin in Aquatic Field Systems. <i>Water, Air, and Soil Pollution</i> , 2005 , 161, 383-398	2.6	107
156	Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. <i>Plant Cell</i> , 2013 , 25, 4691-707	11.6	101
155	Chemical genetic interrogation of natural variation uncovers a molecule that is glycoactivated. <i>Nature Chemical Biology</i> , 2007 , 3, 716-21	11.7	95
154	Comparison of GC-MS and NMR for metabolite profiling of rice subjected to submergence stress. Journal of Proteome Research, 2013 , 12, 898-909	5.6	88
153	Analysis and characterization of heparin impurities. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 399, 527-39	4.4	84
152	Copper-binding compounds from Methylosinus trichosporium OB3b. <i>Journal of Bacteriology</i> , 1998 , 180, 3606-13	3.5	80
151	Fate and effects of enrofloxacin in aquatic systems under different light conditions. <i>Environmental Science & Environmental &</i>	10.3	78
150	Heparin characterization: challenges and solutions. <i>Annual Review of Analytical Chemistry</i> , 2011 , 4, 439	- 65 2.5	77
149	Measuring ligand-protein binding using NMR diffusion experiments. <i>Concepts in Magnetic Resonance</i> , 2004 , 20A, 24-41		75
148	Determination of the acid dissociation constant of the biosurfactant monorhamnolipid in aqueous solution by potentiometric and spectroscopic methods. <i>Analytical Chemistry</i> , 2006 , 78, 7649-58	7.8	73

147	Separation and analysis of peptides and proteins. Analytical Chemistry, 1999, 71, 389R-423R	7.8	72
146	Advances in the separation, sensitive detection, and characterization of heparin and heparan sulfate. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 393, 155-69	4.4	70
145	Occurrence of halogenated transformation products of selected pharmaceuticals and personal care products in secondary and tertiary treated wastewaters from southern California. <i>Environmental Science & Environmental Scienc</i>	10.3	69
144	Purification and physical-chemical properties of methanobactin: a chalkophore from Methylosinus trichosporium OB3b. <i>Biochemistry</i> , 2005 , 44, 5140-8	3.2	66
143	Applications of NMR spectroscopy in environmental science. <i>Progress in Nuclear Magnetic Resonance Spectroscopy</i> , 2004 , 45, 209-238	10.4	65
142	The 2D-J-DOSY experiment: resolving diffusion coefficients in mixtures. <i>Journal of Magnetic Resonance</i> , 2002 , 156, 138-45	3	64
141	Analysis of diffusion coefficient distributions in humic and fulvic acids by means of diffusion ordered NMR spectroscopy. <i>Analytical Chemistry</i> , 1999 , 71, 5315-21	7.8	61
140	Ultraperformance ion-pair liquid chromatography coupled to electrospray time-of-flight mass spectrometry for compositional profiling and quantification of heparin and heparan sulfate. <i>Analytical Chemistry</i> , 2008 , 80, 1297-306	7.8	60
139	Synthesis and properties of metal-ligand complexes with endohedral amine functionality. <i>Inorganic Chemistry</i> , 2011 , 50, 9430-42	5.1	58
138	Metolachlor and Alachlor Breakdown Product Formation Patterns in Aquatic Field Mesocosms. <i>Environmental Science & Environmental Science & Environment</i>	10.3	58
137	Measurement of SDS Micelle-Peptide Association Using (1)H NMR Chemical Shift Analysis and Pulsed-Field Gradient NMR Spectroscopy. <i>Analytical Chemistry</i> , 1998 , 70, 1339-45	7.8	57
136	Quantitative Analysis of Peptides with NMR Spectroscopy. <i>Applied Spectroscopy</i> , 1997 , 51, 1531-1536	3.1	56
135	Detection of insulin aggregates with pulsed-field gradient nuclear magnetic resonance spectroscopy. <i>Analytical Biochemistry</i> , 1995 , 229, 214-20	3.1	56
134	Cis/trans conformational equilibrium across the cysteine6-proline peptide bond of oxytocin, arginine vasopressin, and lysine vasopressin. <i>Journal of the American Chemical Society</i> , 1992 , 114, 7331-	7 3 3 1	55
133	Characterization of distinct root and shoot responses to low-oxygen stress in Arabidopsis with a focus on primary C- and N-metabolism. <i>Plant, Cell and Environment</i> , 2014 , 37, 2366-80	8.4	54
132	Differential metabolic regulation governed by the rice SUB1A gene during submergence stress and identification of alanylglycine by 1H NMR spectroscopy. <i>Journal of Proteome Research</i> , 2012 , 11, 320-30) ^{5.6}	52
131	Measurement of peptide aggregation with pulsed-field gradient nuclear magnetic resonance spectroscopy. <i>BBA - Proteins and Proteomics</i> , 1998 , 1382, 257-65		51
130	Analysis of protein/ligand interactions with NMR diffusion measurements: the importance of eliminating the protein background. <i>Journal of Magnetic Resonance</i> , 2002 , 155, 217-25	3	51

129	Capillary isotachophoresis/NMR: extension to trace impurity analysis and improved instrumental coupling. <i>Analytical Chemistry</i> , 2002 , 74, 2306-13	7.8	51
128	Nuclear magnetic resonance spectroscopic analysis of the selective complexation of the cis and trans isomers of phenylalanylproline by Eyclodextrin. <i>Analytica Chimica Acta</i> , 1995 , 307, 449-457	6.6	48
127	Modified pulsed-field gradient NMR experiments for improved selectivity in the measurement of diffusion coefficients in complex mixtures: application to the analysis of the Suwannee River fulvic acid. <i>Analytical Chemistry</i> , 1997 , 69, 2122-8	7.8	47
126	A comparison of metabolite extraction strategies for 1H-NMR-based metabolic profiling using mature leaf tissue from the model plant Arabidopsis thaliana. <i>Magnetic Resonance in Chemistry</i> , 2009 , 47 Suppl 1, S147-56	2.1	46
125	A mechanistic study of danazol dissolution in ionic surfactant solutions. <i>Journal of Pharmaceutical Sciences</i> , 2003 , 92, 424-35	3.9	44
124	Analytical and biological characterization of halogenated gemfibrozil produced through chlorination of wastewater. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	41
123	Sulfamate proton solvent exchange in heparin oligosaccharides: evidence for a persistent hydrogen bond in the antithrombin-binding pentasaccharide Arixtra. <i>Glycobiology</i> , 2012 , 22, 1173-82	5.8	41
122	13C NMR Relaxation and 1H Diffusion (DOSY) Studies of an Acidic Chloroaluminate Melt. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 4724-4728		41
121	Dynamics of cis/trans isomerization of the cysteine6-proline peptide bonds of oxytocin and arginine-vasopressin in aqueous and methanol solutions. <i>Journal of the American Chemical Society</i> , 1993 , 115, 2833-2836	16.4	41
120	Rice SUB1A constrains remodelling of the transcriptome and metabolome during submergence to facilitate post-submergence recovery. <i>Plant, Cell and Environment</i> , 2018 , 41, 721-736	8.4	40
119	Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 402, 61-8	4.4	40
118	Understanding chiral molecular micellar separations using steady-state fluorescence anisotropy, capillary electrophoresis, and NMR. <i>Langmuir</i> , 2007 , 23, 425-35	4	40
117	Epitope mapping and competitive binding of HSA drug site II ligands by NMR diffusion measurements. <i>Journal of the American Chemical Society</i> , 2004 , 126, 14258-66	16.4	39
116	Improved spin-echo-edited NMR diffusion measurements. <i>Journal of Magnetic Resonance</i> , 2001 , 153, 273-6	3	39
115	NMR diffusion analysis of surfactant-humic substance interactions. <i>Journal of Colloid and Interface Science</i> , 2003 , 261, 508-13	9.3	38
114	Tissue targeted metabonomics: metabolic profiling by microdialysis sampling and microcoil NMR. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 904-9	3.5	38
113	Analysis of molecular square size and purity via pulsed-field gradient NMR spectroscopy. <i>Inorganic Chemistry</i> , 2002 , 41, 6172-4	5.1	38
112	Use of NMR binding interaction mapping techniques to examine interactions of chiral molecules with molecular micelles. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 17359-69	3.4	36

(2016-1998)

111	Polymer additives mixture analysis using pulsed-field gradient NMR spectroscopy. <i>Magnetic Resonance in Chemistry</i> , 1998 , 36, 755-760	2.1	35
110	Measurement of cadmium(II) and calcium(II) complexation by fulvic acids using 113Cd NMR. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	35
109	Insights into the mechanism of separation of heparin and heparan sulfate disaccharides by reverse-phase ion-pair chromatography. <i>Journal of Chromatography A</i> , 2010 , 1217, 479-88	4.5	33
108	Separation and analysis of peptides and proteins. <i>Analytical Chemistry</i> , 1997 , 69, 29R-57R	7.8	33
107	NMR characterization of the host-guest inclusion complex between beta-cyclodextrin and doxepin. <i>Magnetic Resonance in Chemistry</i> , 2008 , 46, 838-45	2.1	33
106	Analytical applications of NMR diffusion measurements. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 378, 1405-7	4.4	33
105	Transferred nuclear overhauser effect in nuclear magnetic resonance diffusion measurements of ligand-protein binding. <i>Analytical Chemistry</i> , 2003 , 75, 627-34	7.8	32
104	Insights into the cITP process using on-line NMR spectroscopy. <i>Analytical Chemistry</i> , 2002 , 74, 4191-7	7.8	32
103	113Cd NMR Binding Studies of CdHulvic Acid Complexes: Evidence of Fast Exchange. <i>Environmental Science & Environmental Scienc</i>	10.3	32
102	Characterization of humic substances: implications for trihalomethane formation. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 378, 1579-86	4.4	31
101	Characterizing the microstructure of heparin and heparan sulfate using N-sulfoglucosamine 1H and 15N NMR chemical shift analysis. <i>Analytical Chemistry</i> , 2013 , 85, 1247-55	7.8	30
100	Separations coupled with NMR detection. <i>TrAC - Trends in Analytical Chemistry</i> , 2003 , 22, 766-775	14.6	29
99	NMR Investigation of the Interactions between 4EFluoro-1Eacetonaphthone and the Suwannee River Fulvic Acid. <i>Environmental Science & Environmental Sci</i>	10.3	29
99 98		10.3	29
	River Fulvic Acid. <i>Environmental Science & Environmental Science & Environmen</i>		
98	River Fulvic Acid. <i>Environmental Science & Environmental Science & Environmen</i>	2.4	28
98 97	River Fulvic Acid. Environmental Science & Sci	2.4 3.9	28

93	Detection of the 1H and 15N NMR resonances of sulfamate groups in aqueous solution: a new tool for heparin and heparan sulfate characterization. <i>Analytical Chemistry</i> , 2011 , 83, 8006-10	7.8	27
92	Separation and analysis of nanomole quantities of heparin oligosaccharides using on-line capillary isotachophoresis coupled with NMR detection. <i>Analytical Chemistry</i> , 2005 , 77, 5998-6003	7.8	27
91	Separation and analysis of trace degradants in a pharmaceutical formulation using on-line capillary isotachophoresis-NMR. <i>Analytical Chemistry</i> , 2007 , 79, 8446-53	7.8	26
90	Characterization of heparin impurities with HPLC-NMR using weak anion exchange chromatography. <i>Analytical Chemistry</i> , 2009 , 81, 10116-23	7.8	25
89	On-line NMR detection of microgram quantities of heparin-derived oligosaccharides and their structure elucidation by microcoil NMR. <i>Analytical and Bioanalytical Chemistry</i> , 2007 , 388, 1707-16	4.4	25
88	Using NMR to Develop Insights into Electrokinetic Chromatography. <i>Analytical Chemistry</i> , 2005 , 77, 254 A-263 A	7.8	25
87	Diffusion Ordered Spectroscopy of Room Temperature Chloroaluminate Melts. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 12409-12412		25
86	Reversed-phase ion-pair ultra-high-performance-liquid chromatography-mass spectrometry for fingerprinting low-molecular-weight heparins. <i>Journal of Chromatography A</i> , 2013 , 1292, 201-10	4.5	24
85	Epimerization of cypermethrin stereoisomers in alcohols. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 6938-43	5.7	24
84	Insights into cyclodextrin interactions during sample stacking using capillary isotachophoresis with on-line microcoil NMR detection. <i>Magnetic Resonance in Chemistry</i> , 2005 , 43, 755-61	2.1	24
83	Novel compstatin family peptides inhibit complement activation by drusen-like deposits in human retinal pigmented epithelial cell cultures. <i>Experimental Eye Research</i> , 2013 , 116, 96-108	3.7	23
82	Sources and Haloacetic Acid/Trihalomethane Formation Potentials of Aquatic Humic Substances in the Wakarusa River and Clinton Lake near Lawrence, Kansas. <i>Environmental Science & Environmental Scien</i>	10.3	23
81	NMR Spectroscopy with Spectral Editing for the Analysis of Complex Mixtures. <i>Applied Spectroscopy</i> , 1999 , 53, 426A-440A	3.1	23
80	Conformational Analysis of the Emyloid Peptide Fragment, (112-28). <i>Journal of Biomolecular Structure and Dynamics</i> , 1995 , 13, 229-244	3.6	23
79	Hydroxyl-proton hydrogen bonding in the heparin oligosaccharide Arixtra in aqueous solution. Journal of Physical Chemistry B, 2014 , 118, 482-91	3.4	22
78	NMR methods to monitor the enzymatic depolymerization of heparin. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 399, 593-603	4.4	22
77	Correlation of the capacity factor in vesicular electrokinetic chromatography with the octanol:water partition coefficient for charged and neutral analytes. <i>Pharmaceutical Research</i> , 2001 , 18, 104-11	4.5	22
76	Examination of cadmium(II) complexation by the Suwannee River fulvic acid using 113Cd NMR relaxation measurements. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	22

75	1H NMR characterization of the product from single solid-phase resin beads using capillary NMR flow probes. <i>Journal of Magnetic Resonance</i> , 2001 , 153, 215-22	3	21
74	(1)H and (15)N NMR Characterization of the Amine Groups of Heparan Sulfate Related Glucosamine Monosaccharides in Aqueous Solution. <i>Analytical Chemistry</i> , 2015 , 87, 6842-8	7.8	20
73	Insights into the capillary electrophoresis separation of heparin disaccharides from nuclear magnetic resonance, pKa, and electrophoretic mobility measurements. <i>Analytical Chemistry</i> , 2009 , 81, 7406-15	7.8	20
72	Separation of ten phosphorylated mono-and disaccharides using HILIC and ion-pairing interactions. <i>Analytica Chimica Acta</i> , 2017 , 972, 102-110	6.6	18
71	A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization. <i>Journal of Magnetic Resonance</i> , 2012 , 216, 169-74	3	18
70	NMR assignments and the acid-base characterization of the pomegranate ellagitannin punicalagin in the acidic pH-range. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 5807-16	4.4	18
69	13C and 27Al NMR Relaxation, Viscosity, and 1H Diffusion Studies of an Ethylaluminum Dichloride Melt. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 1717-1723	3.4	18
68	Development of tissue-targeted metabonomics. Part 1. Analytical considerations. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2008 , 46, 737-47	3.5	18
67	Understanding the effect of the counterion on the reverse-phase ion-pair high-performance liquid chromatography (RPIP-HPLC) resolution of heparin-related saccharide anomers. <i>Analytical Chemistry</i> , 2011 , 83, 6762-9	7.8	17
66	New compstatin peptides containing N-terminal extensions and non-natural amino acids exhibit potent complement inhibition and improved solubility characteristics. <i>Journal of Medicinal Chemistry</i> , 2015 , 58, 814-26	8.3	16
65	Getting to know the nitrogen next door: HNMBC measurements of amino sugars. <i>Journal of Magnetic Resonance</i> , 2011 , 209, 323-31	3	16
64	H NMR Metabolic Profiling of Earthworm (Eisenia fetida) Coelomic Fluid, Coelomocytes, and Tissue: Identification of a New Metabolite-Malylglutamate. <i>Journal of Proteome Research</i> , 2017 , 16, 3407-3418	5.6	15
63	Concentration profiling in rat tissue by high-resolution magic-angle spinning NMR spectroscopy: investigation of a model drug. <i>Analytical Chemistry</i> , 2005 , 77, 2978-84	7.8	15
62	Metabolite biomarkers of chlorothalonil exposure in earthworms, coelomic fluid, and coelomocytes. <i>Science of the Total Environment</i> , 2019 , 681, 435-443	10.2	14
61	The efficient structure elucidation of minor components in heparin digests using microcoil NMR. <i>Carbohydrate Research</i> , 2011 , 346, 2244-54	2.9	14
60	Two-dimensional 1H NMR spectroscopy of aqueous solutions with elimination of the water resonance by transverse relaxation: Application to assignment of the 1H NMR spectrum of reduced arginine vasopressin. <i>Magnetic Resonance in Chemistry</i> , 1991 , 29, 409-417	2.1	14
59	New ACS Guidelines Approved by CPT. <i>Journal of Chemical Education</i> , 2008 , 85, 484	2.4	13
58	Metabolic Profiling of Chloroacetanilide Herbicides in Earthworm Coelomic Fluid Using H NMR and GC-MS. <i>Journal of Proteome Research</i> , 2018 , 17, 2611-2622	5.6	13

57	Anionic deep cavitands enable the adhesion of unmodified proteins at a membrane bilayer. <i>Soft Matter</i> , 2014 , 10, 9651-6	3.6	12
56	Microcoil NMR study of the interactions between doxepin, Eyclodextrin, and acetate during capillary isotachophoresis. <i>Analytical Chemistry</i> , 2012 , 84, 7099-106	7.8	12
55	Use of 1H nuclear magnetic resonance to measure intracellular metabolite levels during growth and asexual sporulation in Neurospora crassa. <i>Eukaryotic Cell</i> , 2011 , 10, 820-31		12
54	Problem-based learning in the analytical chemistry laboratory course. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 380, 357-9	4.4	12
53	19F diffusion NMR analysis of enzyme[hhibitor binding. <i>Magnetic Resonance in Chemistry</i> , 2002 , 40, S98	-5:1:05	12
52	Analysis of the (Trimethylsilyl)propionic Acid-[112-28) Peptide Binding Equilibrium with NMR Spectroscopy. <i>Analytical Chemistry</i> , 1999 , 71, 2117-22	7.8	12
51	Metabolic Impacts of Using Nitrogen and Copper-Regulated Promoters to Regulate Gene Expression in Neurospora crassa. <i>G3: Genes, Genomes, Genetics</i> , 2015 , 5, 1899-908	3.2	11
50	Probing the binding of propranolol enantiomers to alpha1-acid glycoprotein with ligand-detected NMR experiments. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 13581-7	3.4	11
49	A picture is worth a thousand words: animations and simulations in the teaching of analytical science. <i>Analytical and Bioanalytical Chemistry</i> , 2008 , 390, 71-5	4.4	11
48	Complementary Analysis of Peptide Aggregation by NMR and Time-Resolved Laser Spectroscopy. Journal of Physical Chemistry B, 1999 , 103, 2262-2269	3.4	11
47	Use of PFG-NMR for Mixture Analysis: Measurement of Diffusion Coefficients of Cis and Trans Isomers of Proline-Containing Peptides. <i>Applied Spectroscopy</i> , 1999 , 53, 1595-1600	3.1	11
46	The interaction of enoxaparin and fondaparinux with calcium. Carbohydrate Research, 2014, 384, 13-9	2.9	10
45	Tissue-targeted metabonomics: biological considerations and application to doxorubicin-induced hepatic oxidative stress. <i>Metabolomics</i> , 2009 , 5, 219-228	4.7	10
44	Visualizing ion electromigration during isotachophoretic separations with capillary isotachophoresis-NMR. <i>Analytical Chemistry</i> , 2006 , 78, 7078-87	7.8	10
43	High-performance liquid chromatographic-nuclear magnetic resonance investigation of the isomerization of alachlor-ethanesulfonic acid. <i>Journal of Chromatography A</i> , 2004 , 1022, 131-7	4.5	10
42	Heterogeneity of depolymerized heparin SEC fractions: to pool or not to pool?. <i>Carbohydrate Research</i> , 2008 , 343, 2963-70	2.9	9
41	Absorptive transport of amino acids by the rat colon. <i>American Journal of Physiology - Renal Physiology</i> , 2020 , 318, G189-G202	5.1	9
40	Affinity capillary electrophoresis for the determination of binding affinities for low molecular weight heparins and antithrombin-III. <i>Electrophoresis</i> , 2014 , 35, 1469-77	3.6	8

(2015-2012)

39	Glycosaminoglycans: oligosaccharide analysis by liquid chromatography, capillary electrophoresis, and specific labeling. <i>Methods in Molecular Biology</i> , 2012 , 836, 131-44	1.4	8
38	Physicochemical characterization of psychosine by 1H nuclear magnetic resonance and electron microscopy. <i>Lipids</i> , 1997 , 32, 1035-40	1.6	8
37	An improved method for suppressing protein background in PFG NMR experiments to determine ligand diffusion coefficients in the presence of receptor. <i>Journal of Magnetic Resonance</i> , 2006 , 181, 327-	-330	8
36	Direct Determination of NMR Correlation Times: Analysis of the CdayDTA Complex by the Relaxation Rate Ratio Method. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 10573-10578	2.8	8
35	Quantification of punicalagins in commercial preparations and pomegranate cultivars, by liquid chromatography-mass spectrometry. <i>Journal of the Science of Food and Agriculture</i> , 2019 , 99, 4036-4042	4.3	7
34	Peak alignment of one-dimensional NMR spectra by means of an intensity fluctuation frequency difference (IFFD) segment-wise algorithm. <i>Analytical Methods</i> , 2015 , 7, 9673-9682	3.2	7
33	(1)H and (13)C NMR spectral assignments of halogenated transformation products of pharmaceuticals and related environmental contaminants. <i>Magnetic Resonance in Chemistry</i> , 2014 , 52, 310-7	2.1	7
32	The Analytical Sciences Digital Library: Your Online Resource for Teaching Instrumentation. <i>Journal of Chemical Education</i> , 2011 , 88, 375-377	2.4	7
31	Synthesis and conformational analysis of cyclic pentapeptide endothelin antagonists. <i>International Journal of Peptide and Protein Research</i> , 1996 , 48, 229-39		7
30	1H high-resolution magic-angle spinning (HR-MAS) NMR analysis of ligand density on resins using a resin internal standard. <i>Analytical and Bioanalytical Chemistry</i> , 2004 , 380, 627-31	4.4	7
29	Instruction in bioanalytical chemistry. Analytical and Bioanalytical Chemistry, 2005, 382, 855-6	4.4	7
28	The Analytical Sciences Digital Library: a resource to promote active learning. <i>Reviews in Analytical Chemistry</i> , 2014 , 33, 1-9	2.3	6
27	TDCIPP exposure affects Artemia franciscana growth and osmoregulation. <i>Science of the Total Environment</i> , 2019 , 694, 133486	10.2	5
26	Juice quality traits, potassium content, and 1H NMR derived metabolites of 14 pomegranate cultivars. <i>Journal of Berry Research</i> , 2019 , 9, 209-225	2	5
25	Screening enoxaparin tetrasaccharide SEC fractions for 3-O-sulfo-N-sulfoglucosamine residues using [(1)H,(15)N] HSQC NMR. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 1545-55	4.4	5
24	Educational approaches for analytical science. Analytical and Bioanalytical Chemistry, 2004, 378, 1399-40) q .4	5
23	1H NMR-based metabolomics methods for chemical genomics experiments. <i>Methods in Molecular Biology</i> , 2014 , 1056, 225-39	1.4	5
22	Methods for measuring exchangeable protons in glycosaminoglycans. <i>Methods in Molecular Biology</i> , 2015 , 1229, 173-87	1.4	4

21	ABCs of teaching analytical sciences. Tips for effective poster presentations. <i>Analytical and Bioanalytical Chemistry</i> , 2006 , 385, 1347-9	4.4	4
20	Solution-State 170 Quadrupole Central-Transition NMR Spectroscopy in the Active Site of Tryptophan Synthase. <i>Angewandte Chemie</i> , 2016 , 128, 1372-1376	3.6	4
19	Evaluating sub-lethal stress from Roundup exposure in Artemia franciscana using H NMR and GC-MS. <i>Aquatic Toxicology</i> , 2019 , 212, 77-87	5.1	3
18	H NMR-Based Identification of Intestinally Absorbed Metabolites by Ussing Chamber Analysis of the Rat Cecum. <i>Analytical Chemistry</i> , 2018 , 90, 4196-4202	7.8	3
17	VIZRan automated chemometric technique for metabolic profiling. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 8409-17	4.4	3
16	Diffusion-edited NMR spectra of heparin contaminants. <i>Analytical Methods</i> , 2012 , 4, 1168	3.2	3
15	The Analytical Sciences Digital Library (ASDL). Analytical and Bioanalytical Chemistry, 2009, 395, 2425-24	12494	3
14	Revising the quantitative analysis laboratory: what to keep? What to change?. <i>Analytical and Bioanalytical Chemistry</i> , 2006 , 386, 1191-4	4.4	3
13	LC/MS/MS and LC/NMR for the Structure Elucidation of Ciprofloxacin Transformation Products in Pond Water Solution. <i>ACS Symposium Series</i> , 2003 , 146-160	0.4	3
12	Investigation of the Amide Proton Solvent Exchange Properties of Glycosaminoglycan Oligosaccharides. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 4653-4662	3.4	2
11	The Analytical Sciences Digital Library: A Useful Resource for Active Learning. <i>ACS Symposium Series</i> , 2007 , 188-198	0.4	2
10	Using Visible Spectrophotometers and pH Measurements To Study Speciation in a Guided-Inquiry Laboratory. <i>Journal of Chemical Education</i> , 2005 , 82, 1552	2.4	2
9	Synthesis and Structure Reassignment of Malylglutamate, a Recently Discovered Earthworm Metabolite. <i>Journal of Natural Products</i> , 2019 , 82, 417-421	4.9	1
8	Rotating-frame nuclear overhauser enhancement spectroscopy of aqueous solutions with elimination of the water resonance by transverse relaxation. <i>Journal of Magnetic Resonance</i> , 1990 , 87, 352-356		1
7	H NMR characterization of chitin tetrasaccharide in binary HO:DMSO solution: Evidence for anomeric end-effect propagation. <i>International Journal of Biological Macromolecules</i> , 2019 , 129, 744-749.	97.9	1
6	Determination of the binding epitope of lidocaine with AGP: minimizing the effects of nonspecific binding in saturation transfer difference experiments. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 402, 337-47	4.4	O
5	Synopsis of the ACS CPT Fall 2009 Faculty Status Survey. <i>Journal of Chemical Education</i> , 2011 , 88, 11-13	2.4	О
4	Digital resources to enhance instruction. Analytical and Bioanalytical Chemistry, 2004, 379, 321-2	4.4	

LIST OF PUBLICATIONS

Quantitative Analysis in Organic Synthesis with NMR Spectroscopy 2004, 1-36

2	Graduate student internships: developing scientists with real-world experiences. <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 381, 993-5	4.4
1	Methods for Measuring Exchangeable Protons in Glycosaminoglycans. <i>Methods in Molecular Biology</i> , 2022 , 2303, 349-364	1.4