
Stephanie Delbaere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/883608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetic and structural studies of the photochromic process of 3H-naphthopyrans by UV and NMR spectroscopy. Journal of the Chemical Society Perkin Transactions II, 1998, , 1153-1158.	0.9	115
2	NMR Kinetic Investigations of the Photochemical and Thermal Reactions of a Photochromic Chromene. Journal of Organic Chemistry, 2003, 68, 8968-8973.	3.2	86
3	A Simple Molecule-Based Octastate Switch. Journal of the American Chemical Society, 2014, 136, 13510-13513.	13.7	75
4	Quantitative investigations of cation complexation of photochromic 8-benzothiazole-substituted benzopyran: towards metal-ion sensors. Photochemical and Photobiological Sciences, 2010, 9, 199-207.	2.9	56
5	Gated Photochromism and Acidity Photomodulation of a Diacid Dithienylethene Dye. Chemistry - A European Journal, 2012, 18, 6568-6575.	3.3	49
6	Fast Color Change with Photochromic Fused Naphthopyrans. Journal of Organic Chemistry, 2015, 80, 12177-12181.	3.2	48
7	NMR spectroscopy applied to photochromism investigations. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9, 61-80.	11.6	47
8	Bisarylindenols: fixation of conformation leads to exceptional properties of photochromism based on 6l€-electrocyclization. Chemical Communications, 2012, 48, 11838.	4.1	47
9	Photochromic Fused-Naphthopyrans without Residual Color. Journal of Organic Chemistry, 2012, 77, 3959-3968.	3.2	47
10	Photochromic performance of a dithienylethene–indolinooxazolidine hybrid. Photochemical and Photobiological Sciences, 2010, 9, 131.	2.9	44
11	NMR studies of the structure of the photoinduced forms of photochromic spironaphthoxazines. Journal of the Chemical Society Perkin Transactions II, 1997, , 1499-1502.	0.9	38
12	Photoswitch based on remarkably simple naphthopyrans. Tetrahedron Letters, 2005, 46, 3257-3259.	1.4	38
13	Effect of oligothiophene substituents on the photophysical and photochromic properties of a naphthopyran. Photochemical and Photobiological Sciences, 2004, 3, 878.	2.9	37
14	Effects of a Selfâ€Assembled Molecular Capsule on the Ultrafast Photodynamics of a Photochromic Salicylideneaniline Guest. ChemPhysChem, 2011, 12, 1669-1672.	2.1	36
15	Spectral and kinetic properties of a red–blue pH-sensitive photochromic spirooxazine. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 191, 114-121.	3.9	35
16	Preventing the Formation of the Long-Lived ColoredTransoid-TransPhotoisomer in Photochromic Benzopyrans. Organic Letters, 2011, 13, 4040-4043.	4.6	35
17	Quantitative analysis of the dynamic behaviour of photochromic systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011, 12, 74-105.	11.6	34
18	Bridging the Visible: The Modulation of the Absorption by More than 450 nm. Organic Letters, 2010, 12, 4090-4093.	4.6	32

#	Article	IF	CITATIONS
19	Do inverse dithienylethenes behave as normal ones? A joint spectroscopic and theoretical investigation. Physical Chemistry Chemical Physics, 2013, 15, 6226.	2.8	31
20	The Control of Photochromism of [3 <i>H</i>]-Naphthopyran Derivatives with Intramolecular CHâ^'Ï€ Bonds. Organic Letters, 2012, 14, 4150-4153.	4.6	30
21	NMR characterization of allenyl-naphthol in the photochromic process of 3,3-diphenyl-[3H]-naphtho[2-1,b]pyran. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 159, 227-232.	3.9	29
22	NMR Structural and Kinetic Assignment of Fluoro-3H-naphthopyran Photomerocyanines¶. Photochemistry and Photobiology, 2001, 74, 694.	2.5	28
23	Structural and photochemical aspect of metal-ion-binding to a photochromic chromene annulated by crown-ether moiety. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 209, 111-120.	3.9	27
24	The excited state dipole moments of betaine pyridinium investigated by an innovative solvatochromic analysis and TDDFT calculations. Physical Chemistry Chemical Physics, 2011, 13, 13185.	2.8	27
25	Controlled Conversion of Isomers in a Hybrid Biphotochromic System. Organic Letters, 2006, 8, 4931-4934.	4.6	26
26	Photochromic C2-Symmetric Chiral Diarylethene: From the Initial State to the Final State. Journal of Organic Chemistry, 2012, 77, 1853-1859.	3.2	26
27	Synthesis, characterization, biodegradability and surfactant properties of bio-sourced lauroyl poly(glycerol-succinate) oligoesters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419, 263-273.	4.7	26
28	Dual Photochemical Bond Cleavage for a Diarylethene-Based Phototrigger Containing both Methanolic and Acetic Sources. Journal of Organic Chemistry, 2016, 81, 11282-11290.	3.2	25
29	Multimodal Metal Cation Sensing with Bis(macrocyclic) Dye. Chemistry - A European Journal, 2011, 17, 10752-10762.	3.3	24
30	Multinuclear NMR Structural Characterization of an Unprecedented Photochromic Allene Intermediate. Organic Letters, 2002, 4, 3143-3145.	4.6	23
31	Unprecedented coexistence of a spirooxazine and its four transoid photomerocyanines. Tetrahedron Letters, 2006, 47, 4903-4905.	1.4	23
32	Control of the Switching Speed of Photochromic Naphthopyrans through Restriction of Double Bond Isomerization. Journal of Organic Chemistry, 2017, 82, 12028-12037.	3.2	23
33	NMR proofs of the involvement of an allenyl-naphthol as a key-intermediate in the photochromic process of [3H]-naphthopyrans. Tetrahedron Letters, 2003, 44, 259-262.	1.4	22
34	Multistep Thermal Relaxation of Photoisomers in Polyphotochromic Molecules. Journal of Physical Chemistry A, 2004, 108, 10934-10940.	2.5	22
35	Characterization, stability and ecotoxic properties of readily biodegradable branched oligoesters based on bio-sourced succinic acid and glycerol. Polymer Degradation and Stability, 2012, 97, 1956-1963.	5.8	22
36	New insights into the photoswitching mechanisms of normal dithienylethenes. Physical Chemistry Chemical Physics, 2016, 18, 28091-28100.	2.8	22

#	Article	IF	CITATIONS
37	Enhancement of the color intensity of photochromic fused-naphthopyrans. Dyes and Pigments, 2019, 169, 118-124.	3.7	22
38	Studies of polyphotochromic behaviour of supermolecules by NMR spectroscopy. Part 1. A bis-spirooxazine with a (Z)-ethenic bridge between each moiety. Photochemical and Photobiological Sciences, 2002, 1, 333-339.	2.9	21
39	Photochromism of 8-thienyl-naphthopyrans investigated by NMR spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 174-179.	3.9	21
40	A closer look at the photochromism of vinylidene-naphthofurans. Dyes and Pigments, 2017, 137, 593-600.	3.7	20
41	Remarkable thermally stable open forms of photochromic new N-substituted benzopyranocarbazoles. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 242-249.	3.9	19
42	Early Events in the Photochemistry of 1,2,3-Thiadiazole Studied by Ultrafast Time-Resolved UV–Vis and IR Spectroscopies. Journal of Physical Chemistry A, 2011, 115, 14300-14305.	2.5	19
43	One pot synthesis of aryl substituted aurones. Dyes and Pigments, 2012, 92, 537-541.	3.7	18
44	Synthesis of 1-Vinylidene-naphthofurans: A Thermally Reversible Photochromic System That Colors Only When Adsorbed on Silica Gel. Journal of Organic Chemistry, 2013, 78, 6956-6961.	3.2	18
45	Bichromophoric dye derived from benzo[1,3]oxazine system. Dyes and Pigments, 2013, 96, 569-573.	3.7	18
46	Studies of polyphotochromic behaviour of supermolecules by NMR spectroscopy. Part 2. A bis-[3H]naphthopyran with a (Z)-ethenic bridge between each moietyPart 1 is indicated in ref. 5 Photochemical and Photobiological Sciences, 2002, 1, 665-672.	2.9	17
47	Mechanistic understanding of the photochromism of a hybrid dithienylethene–naphthopyran system by NMR spectroscopy. Journal of Physical Organic Chemistry, 2007, 20, 929-935.	1.9	17
48	Kinetic modelling of the photochromism and metal complexation of a spiropyran dye: Application to the Co(II) – Spiroindoline-diphenyloxazolebenzopyran system. Dyes and Pigments, 2011, 89, 324-329.	3.7	17
49	Unexpected Halogen Substituent Effects on the Complex Thermal Relaxation of Naphthopyrans after UV Irradiation. Journal of Organic Chemistry, 2005, 70, 5302-5304.	3.2	16
50	Indolino-Oxazolidine Acido- and Photochromic System Investigated by NMR and Density Functional Theory Calculations. Journal of Organic Chemistry, 2018, 83, 10409-10419.	3.2	16
51	When Light and Acid Play Tic-Tac-Toe with a Nine-State Molecular Switch. Journal of the American Chemical Society, 2019, 141, 19151-19160.	13.7	16
52	Synthesis of a Photochromic Fused 2 <i>H</i> â€Chromene Capable of Generating a Single Coloured Species. European Journal of Organic Chemistry, 2012, 2012, 1768-1773.	2.4	15
53	Insights into the recombination of radical pairs in hexaarylbiimidazoles. Chemical Communications, 2013, 49, 5841.	4.1	15
54	Spectral, Conformational and Photochemical Analyses of Photochromic Dithienylethene: <i>cis</i> â€1,2â€Dicyanoâ€1,2â€bis(2,4,5â€trimethylâ€3â€thienyl)ethene Revisited. European Journal of Organ Chemistry, 2013, 2013, 7809-7814.	ic 2.4	14

#	Article	IF	CITATIONS
55	Acid-Catalyzed Domino Reactions of Tetraarylbut-2-yne-1,4-diols. Synthesis of Conjugated Indenes and Inden-2-ones. Journal of Organic Chemistry, 2014, 79, 5781-5786.	3.2	14
56	Complete assignment of the1H,13C and19F NMR spectra of fluoro-substituted 3H-naphthopyrans. Magnetic Resonance in Chemistry, 1999, 37, 159-162.	1.9	13
57	NMR investigation of the dyes formed under UV irradiation of some photochromic indeno-fused naphthopyrans. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 208, 180-185.	3.9	13
58	Photochemical formation of thiirene and thioketene in 1,2,3-thiadiazoles with phenyl substituents studied by time-resolved spectroscopy. Photochemical and Photobiological Sciences, 2013, 12, 895-901.	2.9	13
59	First synthesis of nitro-substituted 2,2-diphenyl-2H-1-benzopyrans via the ipso-nitration reaction. Tetrahedron, 2007, 63, 8242-8249.	1.9	12
60	Metal Ions Drive Thermodynamics and Photochemistry of the Bis(styryl) Macrocyclic Tweezer. Chemistry - A European Journal, 2010, 16, 5661-5671.	3.3	12
61	Isomeric naphthalimides bearing pyran units: Insight into mutual relation between structure and photochromic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 303-304, 28-35.	3.9	12
62	Reactant-induced photoactivation of in situ generated organogold intermediates leading to alkynylated indoles via Csp2-Csp cross-coupling. Nature Communications, 2022, 13, 2295.	12.8	12
63	Investigations by NMR spectroscopy of a polyphotochromic system involving two entities, spirooxazine and naphthopyran, linked by a Z-ethenic bridge. Perkin Transactions II RSC, 2002, , 2118-2124.	1.1	11
64	Contribution of NMR spectroscopy to the mechanistic understanding of photochromism. International Journal of Photoenergy, 2004, 6, 151-158.	2.5	10
65	Thermally reversible photochromic behaviour of new naphthopyrans involving an intramolecular [2+2] cyclization reaction. Tetrahedron, 2009, 65, 5369-5376.	1.9	10
66	Excited-State Dynamics of Dithienylethenes Functionalized for Self-Supramolecular Assembly. Journal of Physical Chemistry A, 2018, 122, 3572-3582.	2.5	10
67	A Multifunctional Photoswitch: 6Ï€ Electrocyclization versus ESIPT and Metalation. Chemistry - A European Journal, 2014, 20, 12279-12288.	3.3	9
68	Synthesis and photochromic properties of a bis(diarylethene)-naphthopyran hybrid. Dyes and Pigments, 2015, 115, 102-109.	3.7	9
69	One-Pot Synthesis of (+)-Nootkatone via Dark Singlet Oxygenation of Valencene: The Triple Role of the Amphiphilic Molybdate Catalyst. Catalysts, 2016, 6, 184.	3.5	9
70	Regio- and stereoselective [2+2] photocycloaddition in Ba 2+ templated supramolecular dimers of styryl-derivatized aza-heterocycles. Dyes and Pigments, 2017, 139, 397-402.	3.7	9
71	Synthesis and photochromism of a series of new 2-unsubstituted 3-(2-benzylbenzoyl)quinolin-4(1H)-ones. Tetrahedron, 2010, 66, 8291-8299.	1.9	8
72	Mono- and ditopic models of binding of a photochromic chromene annelated with an 18-crown-6ether with protonated amino acids. Organic and Biomolecular Chemistry, 2012, 10, 671-682.	2.8	8

#	Article	IF	CITATIONS
73	Dithienyletheneâ€Based Gated Ambichromic Dyads. Advanced Optical Materials, 2016, 4, 1358-1362.	7.3	8
74	NMR structural elucidation of photochromic quinolone photoproducts. Tetrahedron Letters, 2005, 46, 6319-6324.	1.4	7
75	SERS Study of 3,3-Diphenyl-naphtho[2,1-b]pyran: Another Evidence for Allenyl-Naphthol Involvement in the Photochromic Mechanism. Molecular Crystals and Liquid Crystals, 2005, 430, 235-241.	0.9	7
76	NMR analysis of photochromism of bisthiazolylindenols. Tetrahedron Letters, 2013, 54, 6366-6369.	1.4	7
77	BT-2-BOX: An Assembly toward Multimodal and Multilevel Molecular System Simple as a Breeze. Journal of Physical Chemistry C, 2019, 123, 11823-11832.	3.1	7
78	Unraveling ultrafast dynamics of the photoswitchable bridged dithienylethenes under structural constraints. Physical Chemistry Chemical Physics, 2019, 21, 6407-6414.	2.8	7
79	NMR characterisation of photo-electrocyclised structures of a spirooxazine derivative. Photochemical and Photobiological Sciences, 2003, 2, 978.	2.9	6
80	Photoreversible cyclisation of a 3-(2-benzylbenzoyl)-quinolinone: A highly efficient photochromic compound. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 269-274.	3.9	6
81	Combined NMR, SERRS, and DFT study of photochemical and thermal reactions of acetylene―and thienylacetyleneâ€substituted chromenes. Journal of Physical Organic Chemistry, 2007, 20, 944-952.	1.9	6
82	Photochromism and Metal Complexation of a Macrocyclic Styryl Naphthopyran. ChemPhysChem, 2011, 12, 1294-1301.	2.1	6
83	NMR studies of the polyphotochromic behaviour of biphotochromic compounds. International Journal of Photoenergy, 2004, 6, 215-220.	2.5	5
84	NMR and kinetic investigations of the multistep photochromism of 3-thienyl-naphthopyrans. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 70-78.	3.9	5
85	NMR kinetic analysis of photochromic quinolone photoproducts. Tetrahedron Letters, 2006, 47, 2485-2488.	1.4	5
86	Wavelength-Dependent Reactivity of a Quinolinone: Toward a Photochromic Three-State System. Organic Letters, 2008, 10, 3773-3776.	4.6	5
87	Synthesis and photochemical reactivity of new 4-substituted naphtho[1,2-b]pyran derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 73-78.	3.9	5
88	Synthesis, metal ion binding, and photochromic properties of benzo- and naphthopyrans annelated by crown ether moieties. Tetrahedron, 2012, 68, 7873-7883.	1.9	5
89	Solubility control of organic acid-base salts by photochromism. Dyes and Pigments, 2015, 114, 1-7.	3.7	5
90	Lightâ€Controlled Release and Uptake of Zinc Ions in Solution by a Photochromic Terthiazoleâ€Based Ligand. Chemistry - an Asian Journal, 2017, 12, 853-859.	3.3	5

#	Article	IF	CITATIONS
91	13 metastable states arising from a simple multifunctional unimolecular system. Dyes and Pigments, 2017, 137, 490-498.	3.7	5
92	5-Ureido-3,3-diphenyl-3H-naphtho[2,1-b]pyrans: Photoswitchable self-assembling architectures. International Journal of Photoenergy, 2004, 6, 169-173.	2.5	4
93	Synthesis and Photochromic Behavior of Fluoro 2H-1-Benzopyrans Containing a Carbazole Moiety. Molecular Crystals and Liquid Crystals, 2005, 431, 473-485.	0.9	4
94	Photochromism of indolino-benzopyrans studied by NMR and UV-visible spectroscopy. International Journal of Photoenergy, 2006, 2006, 1-7.	2.5	4
95	Cyclization Dynamics and Competitive Processes of Photochromic Perfluorocyclopentene Dithienylethylene in Solution. ChemPhysChem, 2020, 21, 2223-2229.	2.1	4
96	5â€Nitrogenatedâ€naphthopyrans: toward photoinduced hydrogenâ€bonded complexes. Journal of Physical Organic Chemistry, 2007, 20, 872-877.	1.9	3
97	Photogeneration of an ADADA H-bonding cleft based on a naphthopyran-decorated triazine. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 68-73.	3.9	3
98	Unexpected formation of new photochromic compounds derived from 3,3-diphenyl-3H-naphtho[2,1-b]pyran-1-one. Tetrahedron, 2010, 66, 8317-8324.	1.9	3
99	Metal-ion induced FRET in macrocyclic dynamic tweezers. Tetrahedron, 2013, 69, 8178-8185.	1.9	3
100	Assessing the Structure of Octastate Molecular Switches Using ¹ H NMR Density Functional Theory Calculations. Journal of Physical Chemistry C, 2018, 122, 1800-1808.	3.1	3
101	Synthesis of Polycyclic Spironaphthofuran Derivatives by Acidâ€Catalyzed Domino Reaction of 2â€Naphthols with Tetraarylbutâ€2â€yneâ€1,4â€diols. European Journal of Organic Chemistry, 2018, 2018, 3291-3297.	2.4	3
102	Synthesis of Vinylnaphthofurans and NMR Analysis of their Photoswitching. European Journal of Organic Chemistry, 2021, 2021, 1979-1988.	2.4	3
103	A molecular loaded dice: When the π conjugation breaks the statistical addressability of an octastate multimodal molecular switch. Dyes and Pigments, 2022, 202, 110270.	3.7	3
104	Synthesis and switching properties of new derivatives of azoresveratrol. Dyes and Pigments, 2019, 171, 107666.	3.7	2
105	NMR Spectroscopy to Investigate Switching Reactions. , 2017, , 301-319.		1
106	Coordination-enhanced photochromism in dysprosium dinuclear complexes with photomodulated single-molecule magnet behavior. , 0, 4, 2.		0