List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8836079/publications.pdf Version: 2024-02-01



SONCHINE

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Facile solvothermal synthesis of porous ZnFe <sub>2</sub> O <sub>4</sub> microspheres for capacitive pseudocapacitors. RSC Advances, 2015, 5, 39270-39277.                                                                                                           | 1.7 | 88        |
| 2  | High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B. Journal of Hazardous Materials, 2017, 340, 309-318.                                                                        | 6.5 | 79        |
| 3  | Hierarchically-structured SiO2-Ag@TiO2 hollow spheres with excellent photocatalytic activity and recyclability. Journal of Hazardous Materials, 2018, 354, 17-26.                                                                                                    | 6.5 | 69        |
| 4  | A Catalytic and Positively Thermosensitive Molecularly Imprinted Polymer. Advanced Functional Materials, 2011, 21, 1194-1200.                                                                                                                                        | 7.8 | 65        |
| 5  | Highly sensitive and selective ion-imprinted polymers based on one-step electrodeposition of<br>chitosan-graphene nanocomposites for the determination of Cr(VI). Carbohydrate Polymers, 2018, 195,<br>199-206.                                                      | 5.1 | 61        |
| 6  | â€~On/off'-switchable catalysis by a smart enzyme-like imprinted polymer. Journal of Catalysis, 2011, 278,<br>173-180.                                                                                                                                               | 3.1 | 57        |
| 7  | Recent progress in the syntheses and applications of multishelled hollow nanostructures. Materials Chemistry Frontiers, 2020, 4, 1105-1149.                                                                                                                          | 3.2 | 55        |
| 8  | A Zipperâ€Like On/Offâ€Switchable Molecularly Imprinted Polymer. Advanced Functional Materials, 2011, 21,<br>3344-3349.                                                                                                                                              | 7.8 | 54        |
| 9  | Toward high performance solidâ€state lithiumâ€ion battery with a promising <scp>PEO</scp> /<br><scp>PPC</scp> blend solid polymer electrolyte. International Journal of Energy Research, 2020, 44,<br>10168-10178.                                                   | 2.2 | 47        |
| 10 | A Temperatureâ€Responsive Nanoreactor. Small, 2010, 6, 2453-2459.                                                                                                                                                                                                    | 5.2 | 40        |
| 11 | Modulated molecular recognition by a temperatureâ€sensitive molecularlyâ€imprinted polymer. Journal of Polymer Science Part A, 2009, 47, 2352-2360.                                                                                                                  | 2.5 | 39        |
| 12 | Progress on electrochemical sensors for the determination of heavy metal ions from contaminated water. Journal of the Chinese Advanced Materials Society, 2018, 6, 91-111.                                                                                           | 0.7 | 37        |
| 13 | A Catalytic and Shapeâ€Memory Polymer Reactor. Advanced Functional Materials, 2014, 24, 4996-5001.                                                                                                                                                                   | 7.8 | 36        |
| 14 | An investigation on the graphitic carbon nitride reinforced polyimide composite and evaluation of its tribological properties. Journal of Applied Polymer Science, 2017, 134, 45403.                                                                                 | 1.3 | 33        |
| 15 | Relaxation and Crystallization of Oriented Polymer Melts with Anisotropic Filler Networks. Journal of Physical Chemistry B, 2017, 121, 1426-1437.                                                                                                                    | 1.2 | 30        |
| 16 | Cobalt Oxide Nanoparticles Embedded in Nâ€Doped Porous Carbon as an Efficient Electrode for<br>Supercapacitor. Energy Technology, 2019, 7, 1800963.                                                                                                                  | 1.8 | 30        |
| 17 | Boosting the performance of poly(ethylene oxide)â€based solid polymer electrolytes by blending with<br>poly(vinylidene fluorideâ€coâ€hexafluoropropylene) for solidâ€state lithiumâ€ion batteries. International<br>Journal of Energy Research, 2020, 44, 7831-7840. | 2.2 | 29        |
| 18 | Self-healing Polyurethane Elastomer Based on Molecular Design: Combination of Reversible Hydrogen<br>Bonds and High Segment Mobility. Journal of Inorganic and Organometallic Polymers and Materials,<br>2021, 31, 683-694.                                          | 1.9 | 28        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Molecular Recognition and Catalysis by Molecularly Imprinted Polymer Catalysts: Thermodynamic and<br>Kinetic Surveys on the Specific Behaviors. Journal of Inorganic and Organometallic Polymers and<br>Materials, 2008, 18, 426-433. | 1.9 | 27        |
| 20 | Molecularly Imprinted Polymers: Thermodynamic and Kinetic Considerations on the Specific Sorption and Molecular Recognition. Sensors, 2008, 8, 2854-2864.                                                                             | 2.1 | 27        |
| 21 | Self-switchable catalysis by a nature-inspired polymer nanoreactor containing Pt nanoparticles.<br>Journal of Materials Chemistry A, 2014, 2, 6834-6839.                                                                              | 5.2 | 27        |
| 22 | A Cascadeâ€Reaction Nanoreactor Composed of a Bifunctional Molecularly Imprinted Polymer that<br>Contains Pt Nanoparticles. Chemistry - A European Journal, 2015, 21, 7532-7539.                                                      | 1.7 | 27        |
| 23 | Remarkable improvement of thermal stability of mainâ€chain benzoxazine oligomer by incorporating<br><i>o</i> â€norbornene as terminal functionality. Journal of Applied Polymer Science, 2017, 134, 45408.                            | 1.3 | 27        |
| 24 | A successive-reaction nanoreactor made of active molecularly imprinted polymer containing Ag nanoparticles. Journal of Materials Chemistry A, 2013, 1, 15102.                                                                         | 5.2 | 26        |
| 25 | Antimicrobial and antioxidant capacity of glucosamine-zinc(II) complex via non-enzymatic browning reaction. Food Science and Biotechnology, 2018, 27, 1-7.                                                                            | 1.2 | 25        |
| 26 | Facile Fabrication of Mn2+ Doped Magnetite Microspheres as Efficient Electrode Material for<br>Supercapacitors. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 542-551.                                    | 1.9 | 24        |
| 27 | A pH-Responsive Molecularly Imprinted Hydrogel for Dexamethasone Release. Journal of Inorganic and<br>Organometallic Polymers and Materials, 2019, 29, 659-666.                                                                       | 1.9 | 23        |
| 28 | Rationally Designing Molecularly Imprinted Polymer towards Predetermined High Selectivity by Using<br>Metal as Assembled Pivot. Macromolecular Bioscience, 2007, 7, 1112-1120.                                                        | 2.1 | 22        |
| 29 | Improved Work Function of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonic acid) and its<br>Effect on Hybrid Silicon/Organic Heterojunction Solar Cells. Nanoscale Research Letters, 2016, 11, 532.                             | 3.1 | 22        |
| 30 | A magnetic fluorescence molecularly imprinted polymer sensor with selectivity for dibutyl phthalate<br>via Mn doped ZnS quantum dots. RSC Advances, 2017, 7, 51632-51639.                                                             | 1.7 | 22        |
| 31 | Bamboo shoot skin: turning waste to a valuable adsorbent for the removal of cationic dye from aqueous solution. Clean Technologies and Environmental Policy, 2019, 21, 81-92.                                                         | 2.1 | 21        |
| 32 | An enzyme-like imprinted-polymer reactor with segregated quantum confinements for a tandem catalyst. RSC Advances, 2018, 8, 1610-1620.                                                                                                | 1.7 | 20        |
| 33 | A Positively Temperature-Responsive, Substrate-Selective Ag Nanoreactor. Journal of Physical<br>Chemistry B, 2009, 113, 16501-16507.                                                                                                  | 1.2 | 19        |
| 34 | Vacuum-Deposited Thin Film of Aniline–Formaldehyde Condensate/WO3•nH2O Nanocomposite for NO2<br>Gas Sensor. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 380-386.                                        | 1.9 | 19        |
| 35 | Polymer catalyst with self-assembled hierarchical access for sortable catalysis. Journal of Catalysis, 2015, 331, 49-56.                                                                                                              | 3.1 | 18        |
| 36 | Ceria/reduced Graphene Oxide Nanocomposite: Synthesis, Characterization, and Its Lubrication Application. ChemistrySelect, 2019, 4, 4615-4623.                                                                                        | 0.7 | 18        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Approaching high performance <scp>PVDFâ€HFP</scp> based solid composite electrolytes<br>with <scp>LLTO</scp> nanorods for solidâ€state lithiumâ€ion batteries. International Journal of Energy<br>Research, 2021, 45, 7663-7674. | 2.2 | 18        |
| 38 | A common profile for polymer-based controlled releases and its logical interpretation to general release process. Journal of Pharmacy and Pharmaceutical Sciences, 2006, 9, 238-44.                                              | 0.9 | 18        |
| 39 | Biomimic recognition and catalysis by an imprinted catalysts: a rational design of molecular self-assembly toward predetermined high specificity. Catalysis Letters, 2007, 115, 169-175.                                         | 1.4 | 17        |
| 40 | Glycerol-assisted tuning of the phase and morphology of iron oxide nanostructures for supercapacitor electrode materials. Materials Chemistry Frontiers, 2021, 5, 2758-2770.                                                     | 3.2 | 17        |
| 41 | Rationally Designing Active Molecularly Imprinted Polymer Toward a Highly Specific Catalyst by Using<br>Metal as an Assembled Pivot. Journal of Inorganic and Organometallic Polymers and Materials, 2008,<br>18, 264-271.       | 1.9 | 16        |
| 42 | An "active―and self-switchable nanoreactor. Polymer Chemistry, 2014, 5, 562-566.                                                                                                                                                 | 1.9 | 15        |
| 43 | Vacuum-Deposited Poly(o-phenylenediamine)/WO3·nH2O Nanocomposite Thin Film for NO2 Gas Sensor.<br>Polymer Journal, 2009, 41, 726-732.                                                                                            | 1.3 | 14        |
| 44 | Surface molecularly imprinted polymers based ZnO quantum dots as fluorescence sensors for<br>detection of diethylhexyl phthalate with high sensitivity and selectivity. Polymer International, 2018,<br>67, 1003-1010.           | 1.6 | 13        |
| 45 | Smart Tandem Catalyst Developed with Sundew's Predation Strategy, Capable of Catching,<br>Decomposing and Assimilating Preys. ChemCatChem, 2018, 10, 5231-5241.                                                                  | 1.8 | 13        |
| 46 | Thermodynamic and Kinetic Considerations on the Specific Adsorption and Molecular Recognition by<br>Molecularly Imprinted Polymer. Journal of Inorganic and Organometallic Polymers and Materials,<br>2007, 17, 623-629.         | 1.9 | 12        |
| 47 | An autonomic and "off–on–off―switchable polymer microreactor. RSC Advances, 2015, 5, 5598-5603.                                                                                                                                  | 1.7 | 12        |
| 48 | Switchable polymer reactor composed of mussel-inspired polymer that contains Au nanoparticles.<br>RSC Advances, 2016, 6, 42869-42875.                                                                                            | 1.7 | 12        |
| 49 | Segmental dynamics in interfacial region of composite materials. Monatshefte Für Chemie, 2017, 148, 1285-1293.                                                                                                                   | 0.9 | 12        |
| 50 | "Key-vsLock―Like Polymer Reactor Made of Molecularly Imprinted Polymer Containing Metal<br>Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 890-897.                                     | 1.9 | 11        |
| 51 | Towards next generation "smart―tandem catalysts with sandwiched mussel-inspired layer switch.<br>Materials Today Chemistry, 2020, 17, 100286.                                                                                    | 1.7 | 11        |
| 52 | Molecularly imprinted polymers: modulating molecular recognition by a thermal phase transition in the binding framework. Analytical and Bioanalytical Chemistry, 2008, 392, 177-185.                                             | 1.9 | 10        |
| 53 | A smart nanoreactor with photo-responsive molecular switches for controlling catalytic reactions.<br>Journal of Materials Chemistry C, 2016, 4, 4748-4755.                                                                       | 2.7 | 10        |
| 54 | Artificial Active Nanoreactor with Natureâ€Inspired Sequential Catalytic Ability. ChemistrySelect, 2017,<br>2, 6149-6153.                                                                                                        | 0.7 | 10        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Novel Thermosensitive Core–Shell Surface Molecularly Imprinted Polymers Based on SiO2 for the<br>Selective Adsorption of Sulfamethazine. Materials, 2018, 11, 2067.                                                                  | 1.3 | 10        |
| 56 | Selective Adsorption and Recognition by Molecularly Imprinted Polymer: A Study on Molecular<br>Self-Assembly and its Effect on Selectivity. Polymer-Plastics Technology and Engineering, 2007, 46,<br>613-619.                       | 1.9 | 9         |
| 57 | Rationally Designing Molecularly Imprinted Polymers Toward a Highly Specific Recognition by Using a<br>Stoichiometric Molecular Self-assembly. Journal of Inorganic and Organometallic Polymers and<br>Materials, 2008, 18, 277-283. | 1.9 | 9         |
| 58 | One-step hydrothermal synthesis of carbon@Fe3O4 nanoparticles with high adsorption capacity.<br>Journal of Materials Science: Materials in Electronics, 2014, 25, 1381-1387.                                                         | 1.1 | 9         |
| 59 | Multifunctional electrochemical application of a novel 3D AgInS 2 /rGO nanohybrid for electrochemical detection and HER. Journal of Chemical Technology and Biotechnology, 2019, 94, 3713-3724.                                      | 1.6 | 9         |
| 60 | Ethylene glycol assisted self-template conversion approach to synthesize hollow NiS microspheres<br>for a high performance all-solid-state supercapacitor. Materials Chemistry Frontiers, 2022, 6, 203-212.                          | 3.2 | 9         |
| 61 | Polymer Nanoreactor with "Mobility-Recalling―Domains for On/Off Switchable Catalysis.<br>ChemCatChem, 2015, 7, 814-818.                                                                                                              | 1.8 | 8         |
| 62 | Stimuli-Responsive Biopolymers: An Inspiration for Synthetic Smart Materials and Their Applications in<br>Self-Controlled Catalysis. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30,<br>69-87.             | 1.9 | 8         |
| 63 | Self-switchable polymer reactor with PNIPAM-PAm smart switch capable of tandem/simple catalysis.<br>Polymer, 2021, 235, 124265.                                                                                                      | 1.8 | 8         |
| 64 | Titanium catalyst with the molecular imprinting of substrate for selective photocatalysis. Journal of the Chinese Advanced Materials Society, 2014, 2, 71-81.                                                                        | 0.7 | 7         |
| 65 | Catalytic polymer reactor with "self-sorting―domains for hierarchical catalysis. RSC Advances, 2015,<br>5, 34985-34991.                                                                                                              | 1.7 | 7         |
| 66 | A Novel Electrochemical Sensor Based on Silver Nanodendrites and Molecularly Imprinted Polymers for the Determination of Tetrabromobisphenol A in Water. Electroanalysis, 2018, 30, 2950-2958.                                       | 1.5 | 7         |
| 67 | High Capacitive PEDOT-Coated SiNWs Electrode for Micro-supercapacitors with Facile Preparation.<br>Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3722-3734.                                              | 1.9 | 7         |
| 68 | Electrodeposition Polyaniline Nanofiber on the PEDOT:PSS-Coated SiNWs for High Performance<br>Supercapacitors. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 4260-4271.                                  | 1.9 | 7         |
| 69 | <i>In situ</i> formation of MnO@N-doped carbon for asymmetric supercapacitor with enhanced cycling performance. Materials Chemistry Frontiers, 2022, 6, 491-502.                                                                     | 3.2 | 7         |
| 70 | Establishing Mathematical and Physical Models for the Adsorption of Biomacromolecules. Applied<br>Biochemistry and Biotechnology, 2006, 134, 165-178.                                                                                | 1.4 | 6         |
| 71 | Nanoreactor with Core–Shell Architectures Used as Spatiotemporal Compartments for<br>"Undisturbed―Tandem Catalysis. Journal of Inorganic and Organometallic Polymers and Materials,<br>2019, 29, 1235-1242.                          | 1.9 | 6         |
| 72 | A novel 3D porous electrode of polyaniline and PEDOT:PSS coated SiNWs for low-cost and high-performance supercapacitors. Materials Chemistry Frontiers, 2021, 5, 6114-6124.                                                          | 3.2 | 6         |

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Highly Substrate-Selective Metal Nanoreactor Using a Template-Imprinted Memory. Journal of<br>Inorganic and Organometallic Polymers and Materials, 2009, 19, 335-341.                                                                                                       | 1.9 | 5         |
| 74 | The orientational orders of poly(β-phenethyl l-aspartate) in two opposite α-helical form: a molecular<br>dynamic simulation. Monatshefte Für Chemie, 2017, 148, 1251-1258.                                                                                                    | 0.9 | 5         |
| 75 | Synthesis of La <sub>2</sub> (C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> nanoprisms decorated with Fe <sub>3</sub> O <sub>4</sub> ) anospheres and their application for effective fluoride removal. Journal of Chemical Technology and Biotechnology, 2019, 94, 3650-3660. | 1.6 | 5         |
| 76 | A Novel Bi2O3 Modified C-doped Hollow TiO2 Sphere Based on Glucose-derived Carbon Sphere with<br>Enhanced Visible Light Photocatalytic Activity. Journal of Inorganic and Organometallic Polymers and<br>Materials, 2022, 32, 2298-2308.                                      | 1.9 | 5         |
| 77 | High-throughput Screening: Establishing Mathematical and Physical Models for Bio-target<br>Immobilization. Journal of Mathematical Chemistry, 2007, 41, 271-282.                                                                                                              | 0.7 | 4         |
| 78 | Preparation of a novel magnetic and thermo-responsive composite and its application in drug release.<br>Monatshefte Für Chemie, 2017, 148, 1205-1213.                                                                                                                         | 0.9 | 4         |
| 79 | Polymer Reactor with Alterable Substrate Channeling for the Formation of<br>Cascade/Non-cascade-Switchable Catalytic Ability. Journal of Inorganic and Organometallic Polymers<br>and Materials, 2020, 30, 2039-2049.                                                         | 1.9 | 4         |
| 80 | A soft shape memory reactor with controllable catalysis characteristics. RSC Advances, 2014, 4, 32063-32067.                                                                                                                                                                  | 1.7 | 3         |
| 81 | Hierarchical Polymer Composites as Smart Reactor for Formulating Simple/Tandem-Commutative<br>Catalytic Ability. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4394-4407.                                                                         | 1.9 | 3         |
| 82 | Stomata-inspired smart bilayer catalyst with the dual-responsive ability, capable of single/tandem catalysis. Polymer, 2021, 234, 124238.                                                                                                                                     | 1.8 | 3         |
| 83 | A Novel PHEMA-Based Bismuth Oxide Composite with High Photocatalytic Activity. Journal of<br>Inorganic and Organometallic Polymers and Materials, 2020, 30, 4739-4752.                                                                                                        | 1.9 | 2         |
| 84 | Nature-inspired polymer catalyst for formulating on/off-selective catalytic ability, by virtue of recognition/misrecognition-alterable scaffolds. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2521-2531.                                        | 1.9 | 2         |
| 85 | "Online/Offline―Shiftable Imprinted Polymer Nanoreactor with Selective/Nonselective-Switchable<br>Catalytic Ability. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 21-30.                                                                         | 1.9 | 1         |
| 86 | A Self-Switchable Polymer Reactor for Controlled Catalytic Chemistry Processes with a Hyperbranched Structure. Materials, 2018, 11, 245.                                                                                                                                      | 1.3 | 1         |
| 87 | Artificial Reactor with Alterable Tandem Channeling for the Formation of Selfâ€Screened Catalytic<br>Ability. Chemical Engineering and Technology, 2020, 43, 317-328.                                                                                                         | 0.9 | 1         |
| 88 | Polymer Composite Reactor with "Autonomous―Access for Aquatically Self-Governed Catalytic<br>Ability. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1511-1519.                                                                                    | 1.9 | 0         |
| 89 | Biomimetic polymer reactors and their applications in self-ruled catalysis. , 2019, , 1-31.                                                                                                                                                                                   |     | 0         |
| 90 | "Living―Imprinted-Polymer Reactor Containing Sea Cucumber-Inspired Dynamic Domains for Evoking<br>Selectivity-Online/Offline Catalytic Ability. Journal of Inorganic and Organometallic Polymers and<br>Materials, 2022, 32, 229-239.                                         | 1.9 | 0         |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Dual-Responsive Bilayer Reactor Capable of Non-Tandem/Tandem Adjustable Catalytic Ability. Journal of<br>Inorganic and Organometallic Polymers and Materials, 0, , 1.                                                                  | 1.9 | Ο         |
| 92 | Self-adaptive Polymer Reactor Made of Flytrap-Inspired Catalytic Bi-layers, Capable of<br>Single-Tandem-Single Triple-Shift Catalytic Ability. Journal of Inorganic and Organometallic Polymers<br>and Materials, 2022, 32, 1295-1305. | 1.9 | 0         |
| 93 | Polymer Catalyst with Photo-Mediated Catalytic Ability, by Virtue of Cis/Trans-Alterable<br>Conformation. Journal of Inorganic and Organometallic Polymers and Materials, 0, , 1.                                                      | 1.9 | 0         |
| 94 | Polymer Catalyst with Double "Zipper" Conformations for Formatting Catalytic Substrate-Sieving<br>Ability. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .                                                      | 1.9 | 0         |