ZdenÄ>k TiÅ;ler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8835779/publications.pdf Version: 2024-02-01

Ζηενιάνα Τιάιιερ

#	Article	IF	CITATIONS
1	Polypropylene and rendering fat degrading to value-added chemicals by direct liquefaction and fast-pyrolysis. Biomass Conversion and Biorefinery, 2024, 14, 1027-1036.	2.9	0
2	Phonolite Material as Catalyst Support for the Hydrotreatment of Gas Oil and Vegetable Oil Type Feedstocks. Materials, 2022, 15, 386.	1.3	1
3	Direct Polypropylene and Polyethylene Liquefaction in CO2 and N2 Atmospheres Using MgO Light and CaO as Catalysts. Materials, 2022, 15, 844.	1.3	1
4	Production of Light Olefins via Fischer-Tropsch Process Using Iron-Based Catalysts: A Review. Catalysts, 2022, 12, 174.	1.6	18
5	Recent advances in Fischer-Tropsch synthesis using cobalt-based catalysts: a review on supports, promoters, and reactors. Catalysis Reviews - Science and Engineering, 2021, 63, 512-595.	5.7	91
6	A Review on Production of Light Olefins via Fluid Catalytic Cracking. Energies, 2021, 14, 1089.	1.6	45
7	Hydrotreating of Atmospheric Gas Oil and Co-Processing with Rapeseed Oil Using Sulfur-Free PMoCx/Al ₂ O ₃ Catalysts. ACS Omega, 2021, 6, 7680-7692.	1.6	11
8	Mesityl Oxide Reduction by Using Acid-Modified Phonolite Supported NiW, NiMo, and CoMo Catalysts. Catalysts, 2021, 11, 1101.	1.6	4
9	The influence of long-term exposure of Mg–Al mixed oxide at ambient conditions on its transition to hydrotalcite. Journal of Solid State Chemistry, 2021, 304, 122556.	1.4	4
10	Triglycerides transesterification over Mg-Al and Mg-Fe mixed oxides catalysts: Influence of extrusion additives. Molecular Catalysis, 2021, 516, 111946.	1.0	1
11	Influence of the Addition of Blast Furnace Slag to Alkali-Activated Mixtures Based on Natural Zeolites. Minerals (Basel, Switzerland), 2021, 11, 1307.	0.8	2
12	Hydrocracking of Heavy Fischer–Tropsch Wax Distillation Residues and Its Blends with Vacuum Gas Oil Using Phonolite-Based Catalysts. Molecules, 2021, 26, 7172.	1.7	6
13	A Review on the Production of Light Olefins Using Steam Cracking of Hydrocarbons. Energies, 2021, 14, 8190.	1.6	35
14	Cleaner Fuel Production via Co-Processing of Vacuum Gas Oil with Rapeseed Oil Using a Novel NiW/Acid-Modified Phonolite Catalyst. Energies, 2021, 14, 8497.	1.6	3
15	Alumina-supported MoNx, MoCx and MoPx catalysts for the hydrotreatment of rapeseed oil. Applied Catalysis B: Environmental, 2020, 263, 118328.	10.8	41
16	Solvent-Free Synthesis of Jasminaldehyde in a Fixed-Bed Flow Reactor over Mg-Al Mixed Oxide. Catalysts, 2020, 10, 1033.	1.6	7
17	CoMn Catalysts Derived from Hydrotalcite-Like Precursors for Direct Conversion of Syngas to Fuel Range Hydrocarbons. Catalysts, 2020, 10, 813.	1.6	3
18	Raman Spectroscopy as Molybdenum and Tungsten Content Analysis Tool for Mesoporous Silica and Beta Zeolite Catalysts. Molecules, 2020, 25, 4918.	1.7	5

Zdeněk TiÅiler

#	Article	IF	CITATIONS
19	Oxalic Acid as a Hydrogen Donor for the Hydrodesulfurization of Gas Oil and Deoxygenation of Rapeseed Oil Using Phonolite-Based Catalysts. Molecules, 2020, 25, 3732.	1.7	6
20	Cobalt Based Catalysts on Alkali-Activated Zeolite Foams for N2O Decomposition. Catalysts, 2020, 10, 1398.	1.6	9
21	Influences of Magnesium Content in Rehydrated Mixed Oxides on Furfural Conversion. Catalysts, 2020, 10, 1484.	1.6	3
22	Biodiesel: Modified Mixed Oxides as Catalyst for Transesterification of Rapeseed Oil. Catalysts, 2020, 10, 1397.	1.6	0
23	Characterization of Modified Natural Minerals and Rocks for Possible Adsorption and Catalytic Use. Molecules, 2020, 25, 4989.	1.7	10
24	Modified Alkali Activated Zeolite Foams with Improved Textural and Mechanical Properties. Minerals (Basel, Switzerland), 2020, 10, 483.	0.8	13
25	Highly Active Catalysts for the Dehydration of Isopropanol. Catalysts, 2020, 10, 719.	1.6	6
26	Hydrotreating atmospheric gasoil and co-processing with rapeseed oil using supported Ni-Mo and Co-Mo carbide catalysts. Fuel, 2020, 268, 117363.	3.4	17
27	Key Role of Precursor Nature in Phase Composition of Supported Molybdenum Carbides and Nitrides. Materials, 2019, 12, 415.	1.3	13
28	Clinoptilolite foams prepared by alkali activation of natural zeolite and their post-synthesis modifications. Microporous and Mesoporous Materials, 2019, 282, 169-178.	2.2	23
29	Acid and Thermal Treatment of Alkali-Activated Zeolite Foams. Minerals (Basel, Switzerland), 2019, 9, 719.	0.8	14
30	Aldol Condensation of Cyclohexanone and Furfural in Fixed-Bed Reactor. Catalysts, 2019, 9, 1068.	1.6	10
31	Comparison of the properties and catalytic activity of commercially and laboratory prepared Mg/Al mixed oxides in aldol condensation of cyclohexanone with furfural. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 219-235.	0.8	3
32	Aldol condensation of benzaldehyde and heptanal: a comparative study of laboratory and industrially prepared Mg–Al mixed oxides. Journal of Chemical Technology and Biotechnology, 2018, 93, 166-173.	1.6	19
33	Aldol Condensation of Benzaldehyde and Heptanal Over Zinc Modified Mixed Mg/Al Oxides. Catalysis Letters, 2018, 148, 2042-2057.	1.4	9
34	The effect of vanadium content and speciation on the activity of VOx/ZrO2 catalysts in the conversion of ethanol to acetaldehyde. Applied Catalysis A: General, 2018, 564, 208-217.	2.2	16
35	Physico-Chemical Properties of MgGa Mixed Oxides and Reconstructed Layered Double Hydroxides and Their Performance in Aldol Condensation of Furfural and Acetone. Frontiers in Chemistry, 2018, 6, 176.	1.8	24
36	Influence of Mg–Al Mixed Oxide Compositions on Their Properties and Performance in Aldol Condensation. Industrial & Engineering Chemistry Research, 2017, 56, 13411-13422.	1.8	57

Zdeněk TiÅiler

#	Article	IF	CITATIONS
37	Cold Plasma and Acid Treatment Modification Effects on Phonolite. Acta Chimica Slovenica, 2017, 64, 598-602.	0.2	8
38	HDO catalysts for triglycerides conversion into pyrolysis and isomerization feedstock. Fuel, 2014, 121, 57-64.	3.4	42
39	Co-processing of Atmospheric Gas Oil with Rapeseed Oil Over Sulfur-Free Supported and Phosphorus-Modified Co-Mo and Ni-Mo Carbide Catalysts. Catalysis Letters, 0, , 1.	1.4	0