
Paul D Cheney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8835540/publications.pdf

Version: 2024-02-01

DALLI D CHENEV

#	Article	IF	CITATIONS
1	Monkey flexor and abductor pollicis brevis motoneuron pools: Proximal dendritic trees and small motoneurons. Neuroscience Letters, 2022, 769, 136429.	2.1	0
2	Morphine Potentiates Dysbiotic Microbial and Metabolic Shifts in Acute SIV Infection. Journal of NeuroImmune Pharmacology, 2019, 14, 200-214.	4.1	31
3	Monkey extensor digitorum communis motoneuron pool: Proximal dendritic trees and small motoneurons. Neuroscience Letters, 2018, 675, 12-16.	2.1	2
4	Muscle Synergies Obtained from Comprehensive Mapping of the Cortical Forelimb Representation Using Stimulus Triggered Averaging of EMG Activity. Journal of Neuroscience, 2018, 38, 8759-8771.	3.6	18
5	Representation of individual forelimb muscles in primary motor cortex. Journal of Neurophysiology, 2017, 118, 47-63.	1.8	13
6	Muscle synergies obtained from comprehensive mapping of the primary motor cortex forelimb representation using high-frequency, long-duration ICMS. Journal of Neurophysiology, 2017, 118, 455-470.	1.8	18
7	Perspectives on classical controversies about the motor cortex. Journal of Neurophysiology, 2017, 118, 1828-1848.	1.8	92
8	Effects of Morphine on Behavioral Task Performance in SIV-Infected Rhesus Macaques. Journal of NeuroImmune Pharmacology, 2016, 11, 348-357.	4.1	10
9	Cortical Effects on Ipsilateral Hindlimb Muscles Revealed with Stimulus-Triggered Averaging of EMG Activity. Cerebral Cortex, 2016, 26, 3036-3051.	2.9	1
10	Timing of Cortico-Muscle Transmission During Active Movement. Cerebral Cortex, 2016, 26, 3335-3344.	2.9	5
11	Properties of primary motor cortex output to hindlimb muscles in the macaque monkey. Journal of Neurophysiology, 2015, 113, 937-949.	1.8	19
12	EMG Activation Patterns Associated with High Frequency, Long-Duration Intracortical Microstimulation of Primary Motor Cortex. Journal of Neuroscience, 2014, 34, 1647-1656.	3.6	32
13	Equilibrium-Based Movement Endpoints Elicited from Primary Motor Cortex Using Repetitive Microstimulation. Journal of Neuroscience, 2014, 34, 15722-15734.	3.6	9
14	Effective intracortical microstimulation parameters applied to primary motor cortex for evoking forelimb movements to stable spatial end points. Journal of Neurophysiology, 2013, 110, 1180-1189.	1.8	22
15	Cortical output to fast and slow muscles of the ankle in the rhesus macaque. Frontiers in Neural Circuits, 2013, 7, 33.	2.8	11
16	Enhanced Pulmonary Arteriopathy in Simian Immunodeficiency Virus–infected Macaques Exposed to Morphine. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 1235-1243.	5.6	60
17	Morphine Potentiates Neuropathogenesis of SIV Infection in Rhesus Macaques. Journal of NeuroImmune Pharmacology, 2011, 6, 626-639.	4.1	64
18	Hijacking Cortical Motor Output with Repetitive Microstimulation. Journal of Neuroscience, 2011, 31, 13088-13096.	3.6	55

PAUL D CHENEY

#	Article	IF	CITATIONS
19	Methods for chronic recording of EMG activity from large numbers of hindlimb muscles in awake rhesus macaques. Journal of Neuroscience Methods, 2010, 189, 153-161.	2.5	11
20	Output Properties and Organization of the Forelimb Representation of Motor Areas on the Lateral Aspect of the Hemisphere in Rhesus Macaques. Cerebral Cortex, 2010, 20, 169-186.	2.9	65
21	Forelimb Muscle Representations and Output Properties of Motor Areas in the Mesial Wall of Rhesus Macaques. Cerebral Cortex, 2010, 20, 704-719.	2.9	39
22	Stability of Output Effects from Motor Cortex to Forelimb Muscles in Primates. Journal of Neuroscience, 2009, 29, 1915-1927.	3.6	15
23	Rhesus Macaque Model of Chronic Opiate Dependence and Neuro-AIDS: Longitudinal Assessment of Auditory Brainstem Responses and Visual Evoked Potentials. Journal of NeuroImmune Pharmacology, 2009, 4, 260-275.	4.1	6
24	Effect of Morphine on the Neuropathogenesis of SIVmac Infection in Indian Rhesus Macaques. Journal of NeuroImmune Pharmacology, 2008, 3, 12-25.	4.1	23
25	Contrasting Properties of Motor Output from the Supplementary Motor Area and Primary Motor Cortex in Rhesus Macaques. Cerebral Cortex, 2006, 16, 632-638.	2.9	53
26	Principles of corticospinal system organization and function. Handbook of Clinical Neurophysiology, 2004, 4, 59-96.	0.0	4
27	Properties of Primary Motor Cortex Output to Forelimb Muscles in Rhesus Macaques. Journal of Neurophysiology, 2004, 92, 2968-2984.	1.8	94
28	Electrophysiological Methods for Mapping Brain Motor and Sensory Circuits. , 2002, , 189-226.		13
29	Consistent Features in the Forelimb Representation of Primary Motor Cortex in Rhesus Macaques. Journal of Neuroscience, 2001, 21, 2784-2792.	3.6	178
30	Chronic recording of EMG activity from large numbers of forelimb muscles in awake macaque monkeys. Journal of Neuroscience Methods, 2000, 96, 153-160.	2.5	31
31	Plasticity in the Distribution of the Red Nucleus Output to Forearm Muscles After Unilateral Lesions of the Pyramidal Tract. Journal of Neurophysiology, 2000, 83, 3147-3153.	1.8	108
32	Correlations Between Corticomotoneuronal (CM) Cell Postspike Effects and Cell-Target Muscle Covariation. Journal of Neurophysiology, 2000, 83, 99-115.	1.8	47
33	Sensory Evoked Potentials in SIV-Infected Monkeys with Rapidly and Slowly Progressing Disease. AIDS Research and Human Retroviruses, 2000, 16, 1163-1173.	1.1	12
34	Motor skill impairment in SIVâ€infected rhesus macaques with rapidly and slowly progressing disease. Journal of Medical Primatology, 1999, 28, 105-117.	0.6	22
35	Motor evoked potentials in a rhesus macaque model of neuro-AIDS. Journal of NeuroVirology, 1999, 5, 217-231.	2.1	15
36	Simple and Choice Reaction Time Performance in SIV-Infected Rhesus Macaques. AIDS Research and Human Retroviruses, 1999, 15, 571-583.	1.1	27

PAUL D CHENEY

#	Article	IF	CITATIONS
37	Microglial Activation and Neurological Symptoms in the SIV Model of NeuroAIDS: Association of MHC-II and MMP-9 Expression with Behavioral Deficits and Evoked Potential Changes. Neurobiology of Disease, 1999, 6, 486-498.	4.4	63
38	Neurovirulent simian immunodeficiency virus induces calbindin-D-28K in astrocytes. Molecular and Chemical Neuropathology, 1998, 34, 25-38.	1.0	5
39	A low-cost, multi-channel, EMG signal processing amplifier. Journal of Neuroscience Methods, 1998, 79, 123-127.	2.5	11
40	Auditory brainstem responses in a Rhesus Macaque model of neuro-AIDS. Journal of NeuroVirology, 1998, 4, 512-520.	2.1	19
41	Distribution and Characteristics of Poststimulus Effects in Proximal and Distal Forelimb Muscles From Red Nucleus in the Monkey. Journal of Neurophysiology, 1998, 79, 1777-1789.	1.8	60
42	Corticomotoneuronal Postspike Effects in Shoulder, Elbow, Wrist, Digit, and Intrinsic Hand Muscles During a Reach and Prehension Task. Journal of Neurophysiology, 1998, 80, 1961-1980.	1.8	251
43	Gradient of Microglial Activation in the Brain of SIV Infected Macaques. Journal of Neuro-AIDS, 1998, 2, 43-54.	0.2	7
44	Effects on Muscle Activity From Microstimuli Applied to Somatosensory and Motor Cortex During Voluntary Movement in the Monkey. Journal of Neurophysiology, 1997, 77, 2446-2465.	1.8	58
45	Pathophysiology of the corticospinal system and basal ganglia in cerebral palsy. , 1997, 3, 153-167.		11
46	Chapter 11 Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Progress in Brain Research, 1991, 87, 213-252.	1.4	152
47	Encoding of motor parameters by corticomotoneuronal (CM) and rubromotoneuronal (RM) cells producing postspike facilitation of forelimb muscles in the behaving monkey. Behavioural Brain Research, 1988, 28, 181-191.	2.2	82
48	Reciprocal effect of single corticomotoneuronal cells on wrist extensor and flexor muscle activity in the primate. Brain Research, 1982, 247, 164-168.	2.2	22