
Takuro Nakagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8835144/publications.pdf Version: 2024-02-01

TAKUPO NAKACAMA

#	Article	lF	CITATIONS
1	Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO Journal, 2007, 26, 1327-1339.	7.8	163
2	The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nature Cell Biology, 2009, 11, 357-362.	10.3	141
3	The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO Journal, 1999, 18, 5714-5723.	7.8	128
4	Saccharomyces cerevisiae Mer3 Helicase Stimulates 3′–5′ Heteroduplex Extension by Rad51. Cell, 2004, 117, 47-56.	28.9	111
5	Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO Journal, 2012, 31, 2182-2194.	7.8	97
6	Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins. EMBO Journal, 2006, 25, 4663-4674.	7.8	84
7	Auxin-inducible protein depletion system in fission yeast. BMC Cell Biology, 2011, 12, 8.	3.0	79
8	Functions of the yeast meiotic recombination genes, MRE11 and MRE2. Advances in Biophysics, 1995, 31, 67-76.	0.5	72
9	Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes and Development, 2012, 26, 2050-2062.	5.9	68
10	Multiple functions of MutS- and MutL-related heterocomplexes. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14186-14188.	7.1	60
11	Saccharomyces cerevisiae Mer3 Is a DNA Helicase Involved in Meiotic Crossing Over. Molecular and Cellular Biology, 2002, 22, 3281-3291.	2.3	59
12	Rad51 suppresses gross chromosomal rearrangement at centromere in Schizosaccharomyces pombe. EMBO Journal, 2008, 27, 3036-3046.	7.8	58
13	The MER3 Helicase Involved in Meiotic Crossing Over Is Stimulated by Single-stranded DNA-binding Proteins and Unwinds DNA in the 3′ to 5′ Direction. Journal of Biological Chemistry, 2001, 276, 31487-31493.	3.4	54
14	Involvement of the MRE2 gene of yeast in formation of meiosis-specific double-strand breaks and crossover recombination through RNA splicing. Genes To Cells, 1997, 2, 65-79.	1.2	50
15	The Prereplication Complex Recruits XEco2 to Chromatin to Promote Cohesin Acetylation in Xenopus Egg Extracts. Current Biology, 2012, 22, 977-988.	3.9	50
16	DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast. Molecular Biology of the Cell, 2012, 23, 3240-3253.	2.1	41
17	The MER3 DNA Helicase Catalyzes the Unwinding of Holliday Junctions. Journal of Biological Chemistry, 2002, 277, 28019-28024.	3.4	38
18	A novel allele of fission yeast rad11 that causes defects in DNA repair and telomere length regulation. Nucleic Acids Research, 2003, 31, 7141-7149.	14.5	38

Takuro Nakagawa

#	Article	IF	CITATIONS
19	$MutS\hat{l}\pmmaintains$ the mismatch repair capability by inhibiting PCNA unloading. ELife, 2016, 5, .	6.0	37
20	Nucleosomes around a mismatched base pair are excluded via an Msh2-dependent reaction with the aid of SNF2 family ATPase Smarcad1. Genes and Development, 2018, 32, 806-821.	5.9	35
21	CDK promotes interactions of Sld3 and Drc1 with Cut5 for initiation of DNA replication in fission yeast. Molecular Biology of the Cell, 2011, 22, 2620-2633.	2.1	34
22	Rad51 and Rad54 promote noncrossover recombination between centromere repeats on the same chromatid to prevent isochromosome formation. Nucleic Acids Research, 2016, 44, 10744-10757.	14.5	30
23	The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast. Nucleic Acids Research, 2014, 42, 5644-5656.	14.5	27
24	A Novel Intermediate in Initiation Complex Assembly for Fission Yeast DNA Replication. Molecular Biology of the Cell, 2004, 15, 3740-3750.	2.1	26
25	Regulation of mitotic recombination between DNA repeats in centromeres. Nucleic Acids Research, 2017, 45, 11222-11235.	14.5	26
26	Mcm4 C-terminal domain of MCM helicase prevents excessive formation of single-stranded DNA at stalled replication forks. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12973-12978.	7.1	25
27	Regulation of DNA Replication Machinery by Mrc1 in Fission Yeast. Genetics, 2006, 174, 155-165.	2.9	24
28	Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS-dependent transcription. Communications Biology, 2019, 2, 17.	4.4	24
29	Transcriptional silencing of centromere repeats by heterochromatin safeguards chromosome integrity. Current Genetics, 2019, 65, 1089-1098.	1.7	20
30	Abundance of Prereplicative Complexes (Pre-RCs) Facilitates Recombinational Repair under Replication Stress in Fission Yeast. Journal of Biological Chemistry, 2011, 286, 41701-41710.	3.4	13
31	DNA replication machinery prevents Rad52-dependent single-strand annealing that leads to gross chromosomal rearrangements at centromeres. Communications Biology, 2020, 3, 202.	4.4	13
32	Shelterin promotes tethering of late replication origins to telomeres for replicationâ€ŧiming control. EMBO Journal, 2018, 37, .	7.8	11
33	Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO Journal, 2007, 26, 2821-2821.	7.8	7
34	Fission yeast Rad8/HLTF facilitates Rad52-dependent chromosomal rearrangements through PCNA lysine 107 ubiquitination. PLoS Genetics, 2021, 17, e1009671.	3.5	5