Xi-Yin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8834325/publications.pdf

Version: 2024-02-01

70961 79541 22,031 76 41 73 citations h-index g-index papers 88 88 88 16543 docs citations times ranked citing authors all docs

#	ARTICLE	IF	CITATIONS
1	Chromosome-length genome assemblies of six legume species provide insights into genome organization, evolution, and agronomic traits for crop improvement. Journal of Advanced Research, 2022, 42, 315-329.	4.4	20
2	Genome structure and evolutionary history of frankincense producing Boswellia sacra. IScience, 2022, 25, 104574.	1.9	3
3	Integrative genomics analysis of the ever-shrinking pectin methylesterase (PME) gene family in foxtail		

#	Article	IF	Citations
19	Coriander Genomics Database: a genomic, transcriptomic, and metabolic database for coriander. Horticulture Research, 2020, 7, 55.	2.9	35
20	Cotton Duplicated Genes Produced by Polyploidy Show Significantly Elevated and Unbalanced Evolutionary Rates, Overwhelmingly Perturbing Gene Tree Topology. Frontiers in Genetics, 2020, 11, 239.	1.1	14
21	Alignment of Rutaceae Genomes Reveals Lower Genome Fractionation Level Than Eudicot Genomes Affected by Extra Polyploidization. Frontiers in Plant Science, 2019, 10, 986.	1.7	6
22	The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nature Communications, 2019, 10, 5158.	5.8	94
23	Polyploidy Index and Its Implications for the Evolution of Polyploids. Frontiers in Genetics, 2019, 10, 807.	1.1	29
24	Sequencing of Cultivated Peanut, Arachis hypogaea, Yields Insights into Genome Evolution and Oil Improvement. Molecular Plant, 2019, 12, 920-934.	3.9	185
25	The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 2019, 51, 865-876.	9.4	398
26	Reconstruction of evolutionary trajectories of chromosomes unraveled independent genomic repatterning between Triticeae and Brachypodium. BMC Genomics, 2019, 20, 180.	1.2	12
27	A newly identified cluster of glutathione <i>S</i> â€transferase genes provides Verticillium wilt resistance in cotton. Plant Journal, 2019, 98, 213-227.	2.8	44
28	Recursive Paleohexaploidization Shaped the Durian Genome. Plant Physiology, 2019, 179, 209-219.	2.3	36
29	An Overlooked Paleotetraploidization in Cucurbitaceae. Molecular Biology and Evolution, 2018, 35, 16-26.	3.5	89
30	Discovery and annotation of a novel transposable element family in Gossypium. BMC Plant Biology, 2018, 18, 307.	1.6	6
31	Genomic, expressional, protein-protein interactional analysis of Trihelix transcription factor genes in Setaria italia and inference of their evolutionary trajectory. BMC Genomics, 2018, 19, 665.	1.2	14
32	Two Likely Auto-Tetraploidization Events Shaped Kiwifruit Genome and Contributed to Establishment of the Actinidiaceae Family. IScience, 2018, 7, 230-240.	1.9	44
33	Comprehensive analyses of the BES1 gene family in Brassica napus and examination of their evolutionary pattern in representative species. BMC Genomics, 2018, 19, 346.	1.2	45
34	Hierarchically Aligning 10 Legume Genomes Establishes a Family-Level Genomics Platform. Plant Physiology, 2017, 174, 284-300.	2.3	112
35	Two Highly Similar Poplar Paleo-subgenomes Suggest an Autotetraploid Ancestor of Salicaceae Plants. Frontiers in Plant Science, 2017, 08, 571.	1.7	20
36	Alignment of Common Wheat and Other Grass Genomes Establishes a Comparative Genomics Research Platform. Frontiers in Plant Science, 2017, 8, 1480.	1.7	11

#	Article	IF	Citations
37	RNA-Seq Profiling Shows Divergent Gene Expression Patterns in Arabidopsis Grown under Different Densities. Frontiers in Plant Science, 2017, 8, 2001.	1.7	10
38	Comparative Genomics Analysis of Rice and Pineapple Contributes to Understand the Chromosome Number Reduction and Genomic Changes in Grasses. Frontiers in Genetics, 2016, 7, 174.	1.1	15
39	Origination, Expansion, Evolutionary Trajectory, and Expression Bias of AP2/ERF Superfamily in Brassica napus. Frontiers in Plant Science, 2016, 7, 1186.	1.7	36
40	Comparative genomic deâ€convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation. New Phytologist, 2016, 209, 1252-1263.	3.5	65
41	Draft genome of the peanut A-genome progenitor (<i>Arachis duranensis</i>) provides insights into geocarpy, oil biosynthesis, and allergens. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6785-6790.	3.3	235
42	Genome Alignment Spanning Major Poaceae Lineages Reveals Heterogeneous Evolutionary Rates and Alters Inferred Dates for Key Evolutionary Events. Molecular Plant, 2015, 8, 885-898.	3.9	131
43	Comparative Analysis of Gene Conversion Between Duplicated Regions in Brassica rapa and B. oleracea Genomes. Compendium of Plant Genomes, 2015, , 121-129.	0.3	3
44	Telomereâ€centric genome repatterning determines recurring chromosome number reductions during the evolution of eukaryotes. New Phytologist, 2015, 205, 378-389.	3.5	64
45	Insights into the Common Ancestor of Cereals. Advances in Botanical Research, 2014, 69, 175-194.	0.5	0
46	Comparative and Evolutionary Analysis of Major Peanut Allergen Gene Families. Genome Biology and Evolution, 2014, 6, 2468-2488.	1.1	15
47	Extensive and Biased Intergenomic Nonreciprocal DNA Exchanges Shaped a Nascent Polyploid Genome, <i>Gossypium</i> (Cotton). Genetics, 2014, 197, 1153-1163.	1.2	51
48	SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics, 2014, 15, 162.	1.2	410
49	Comparative Analysis of <i>Miscanthus</i> and <i>Saccharum</i> Reveals a Shared Whole-Genome Duplication but Different Evolutionary Fates. Plant Cell, 2014, 26, 2420-2429.	3.1	88
50	Early allopolyploid evolution in the post-Neolithic <i>Brassica napus</i> oilseed genome. Science, 2014, 345, 950-953.	6.0	2,089
51	The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications, 2014, 5, 3930.	5.8	918
52	Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology, 2014, 15, R77.	13.9	456
53	Gene body methylation shows distinct patterns associated with different gene origins and duplication modes and has a heterogeneous relationship with gene expression in <i>Oryza sativa</i> (rice). New Phytologist, 2013, 198, 274-283.	3.5	57
54	Comparative Genomic Analysis of C4 Photosynthesis Pathway Evolution in Grasses. , 2013, , 447-477.		4

#	Article	IF	CITATIONS
55	Genome Sequencing and Comparative Genomics in Cereals. , 2013, , 101-126.		O
56	Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications, 2013, 4, 2445.	5.8	277
57	MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40, e49-e49.	6.5	4,252
58	PGDD: a database of gene and genome duplication in plants. Nucleic Acids Research, 2012, 41, D1152-D1158.	6.5	544
59	Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492, 423-427.	13.7	1,204
60	Gene Conversion in Angiosperm Genomes with an Emphasis on Genes Duplicated by Polyploidization. Genes, 2011, 2, 1-20.	1.0	47
61	Modes of Gene Duplication Contribute Differently to Genetic Novelty and Redundancy, but Show Parallels across Divergent Angiosperms. PLoS ONE, 2011, 6, e28150.	1.1	139
62	Comparative analysis of peanut NBS‣RR gene clusters suggests evolutionary innovation among duplicated domains and erosion of gene microsynteny. New Phytologist, 2011, 192, 164-178.	3.5	63
63	The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43, 1035-1039.	9.4	1,893
64	Seventy Million Years of Concerted Evolution of a Homoeologous Chromosome Pair, in Parallel, in Major Poaceae Lineages. Plant Cell, 2011, 23, 27-37.	3.1	80
65	Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 472-477.	3.3	267
66	Comparative inference of illegitimate recombination between rice and sorghum duplicated genes produced by polyploidization. Genome Research, 2009, 19, 1026-1032.	2.4	83
67	The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457, 551-556.	13.7	2,642
68	Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biology, 2009, 10, R68.	13.9	144
69	The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452, 991-996.	13.7	964
70	Synteny and Collinearity in Plant Genomes. Science, 2008, 320, 486-488.	6.0	1,156
71	Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Research, 2008, 18, 1944-1954.	2.4	515
72	Extensive Concerted Evolution of Rice Paralogs and the Road to Regaining Independence. Genetics, 2007, 177, 1753-1763.	1.2	85

#	Article	IF	CITATIONS
73	Evidence that Natural Selection is the Primary Cause of the Guanine-cytosine Content Variation in Rice Genes. Journal of Integrative Plant Biology, 2007, 49, 1393-1399.	4.1	10
74	Statistical inference of chromosomal homology based on gene colinearity and applications to Arabidopsis and rice. BMC Bioinformatics, 2006, 7, 447.	1.2	123
75	Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytologist, 2005, 165, 937-946.	3.5	318
76	The Genomes of Oryza sativa: A History of Duplications. PLoS Biology, 2005, 3, e38.	2.6	808