## Dezhi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8834196/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Phase engineering of a multiphasic 1T/2H MoS <sub>2</sub> catalyst for highly efficient hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 2681-2688.                                                     | 5.2  | 391       |
| 2  | Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. Journal of Power Sources, 2014, 264, 229-234.                                                                   | 4.0  | 271       |
| 3  | Sulfur-Decorated Molybdenum Carbide Catalysts for Enhanced Hydrogen Evolution. ACS Catalysis, 2015, 5, 6956-6963.                                                                                                     | 5.5  | 208       |
| 4  | Swollen Ammoniated MoS <sub>2</sub> with 1T/2H Hybrid Phases for High-Rate Electrochemical<br>Energy Storage. ACS Sustainable Chemistry and Engineering, 2017, 5, 2509-2515.                                          | 3.2  | 194       |
| 5  | Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS <sub>2</sub> .<br>Journal of Materials Chemistry A, 2015, 3, 13050-13056.                                                               | 5.2  | 140       |
| 6  | Ni-doped MoS <sub>2</sub> nanoparticles as highly active hydrogen evolution electrocatalysts. RSC<br>Advances, 2016, 6, 16656-16661.                                                                                  | 1.7  | 124       |
| 7  | Structure and phase regulation in MoxC (α-MoC1-x/β-Mo2C) to enhance hydrogen evolution. Applied Catalysis B: Environmental, 2019, 247, 78-85.                                                                         | 10.8 | 123       |
| 8  | N, P (S) Co-doped Mo2C/C hybrid electrocatalysts for improved hydrogen generation. Carbon, 2018, 139,<br>845-852.                                                                                                     | 5.4  | 97        |
| 9  | In Situ Preparation of Mo <sub>2</sub> C Nanoparticles Embedded in Ketjenblack Carbon as Highly<br>Efficient Electrocatalysts for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018,<br>6, 983-990. | 3.2  | 83        |
| 10 | N-doped MoP nanoparticles for improved hydrogen evolution. International Journal of Hydrogen<br>Energy, 2017, 42, 14566-14571.                                                                                        | 3.8  | 74        |
| 11 | Hydrogen evolution catalyzed by cobalt-promoted molybdenum phosphide nanoparticles. Catalysis<br>Science and Technology, 2016, 6, 1952-1956.                                                                          | 2.1  | 72        |
| 12 | Preparation and Tribological Properties of MoS <sub>2</sub> Nanosheets. Advanced Engineering<br>Materials, 2010, 12, 534-538.                                                                                         | 1.6  | 62        |
| 13 | Selective recovery of lithium and iron phosphate/carbon from spent lithium iron phosphate cathode<br>material by anionic membrane slurry electrolysis. Waste Management, 2020, 107, 1-8.                              | 3.7  | 54        |
| 14 | Recovery of Lithium and Manganese from Scrap LiMn <sub>2</sub> O <sub>4</sub> by Slurry<br>Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 16738-16746.                                             | 3.2  | 53        |
| 15 | High-Performance MoC Electrocatalyst for Hydrogen Evolution Reaction Enabled by Surface Sulfur<br>Substitution. ACS Applied Materials & Interfaces, 2021, 13, 40705-40712.                                            | 4.0  | 51        |
| 16 | Surfactant-assisted fabrication of MoS2 nanospheres. Journal of Materials Science, 2010, 45, 182-187.                                                                                                                 | 1.7  | 47        |
| 17 | Oxygen-incorporated defect-rich MoP for highly efficient hydrogen production in both acidic and alkaline media. Electrochimica Acta, 2018, 281, 540-548.                                                              | 2.6  | 44        |
| 18 | Hydrogen generation by splitting water with Al-Li alloys. International Journal of Energy Research, 2013, 37, 1624-1634.                                                                                              | 2.2  | 32        |

Dezhi Wang

| #  | Article                                                                                                                                                                                                 | IF                | CITATIONS          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 19 | Influence of Carbon on Molybdenum Carbide Catalysts for the Hydrogen Evolution Reaction.<br>ChemCatChem, 2016, 8, 1961-1967.                                                                            | 1.8               | 32                 |
| 20 | Highly Efficient Electrocatalytic N <sub>2</sub> Reduction to Ammonia over Metallic 1T Phase of<br>MoS <sub>2</sub> Enabled by Active Sites Separation Mechanism. Advanced Science, 2022, 9, e2103583.  | 5.6               | 31                 |
| 21 | Hierarchical Mo <sub>2</sub> C/C Scaffolds Organized by Nanosheets as Highly Efficient<br>Electrocatalysts for Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2018, 6,<br>13995-14003. | 3.2               | 26                 |
| 22 | Amorphous phosphorus-doped MoS <sub>2</sub> catalyst for efficient hydrogen evolution reaction.<br>Nanotechnology, 2019, 30, 205401.                                                                    | 1.3               | 25                 |
| 23 | Enhanced hydrogen evolution from the MoP/C hybrid by the modification of Ketjen Black. Journal of<br>Materials Science, 2017, 52, 3337-3343.                                                            | 1.7               | 22                 |
| 24 | Effect of Annealing Temperature on Co–MoS2 Nanosheets for Hydrodesulfurization of<br>Dibenzothiophene. Catalysis Letters, 2014, 144, 261-267.                                                           | 1.4               | 19                 |
| 25 | Facile synthesis of MoP/MoO2 heterostructures for efficient hydrogen generation. Materials Letters, 2019, 241, 227-230.                                                                                 | 1.3               | 19                 |
| 26 | A facile preparation of WS2 nanosheets as a highly effective HER catalyst. Tungsten, 2019, 1, 101-109.                                                                                                  | 2.0               | 19                 |
| 27 | Template-free synthesis of porous Mo3P/MoP nanobelts as efficient catalysts for hydrogen generation. Applied Surface Science, 2019, 493, 740-746.                                                       | 3.1               | 16                 |
| 28 | Modulating electronic structures of holey Mo2N nanobelts by sulfur decoration for enhanced hydrogen generation. Electrochimica Acta, 2020, 364, 137219.                                                 | 2.6               | 8                  |
| 29 | Effect of Yb2O3 content on dielectric and energy-storage properties of lead-free niobate<br>glass–ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 19238-19244.              | 1.1               | 6                  |
| 30 | Sintering Behavior and Properties of Mo-Cu Composites. Advances in Materials Science and Engineering, 2018, 2018, 1-7.                                                                                  | 1.0               | 6                  |
| 31 | Boron triggers the phase transformation of Mo <i> <sub>x</sub> </i> C ( <i>α</i> -MoC <sub>1â^'<i>x</i>) Tj ET</sub>                                                                                    | Qq1 1 0.78<br>1.3 | 34314 rgBT (0<br>6 |
| 32 | A Novel Non-Equiatomic (W35Ta35Mo15Nb15)95Ni5 Refractory High Entropy Alloy with High Density<br>Fabricated by Powder Metallurgical Process. Metals, 2020, 10, 1436.                                    | 1.0               | 6                  |
| 33 | MoS2/Cu2O nanohybrid as a highly efficient catalyst for the photoelectrocatalytic hydrogen generation. Materials Letters, 2019, 256, 126622.                                                            | 1.3               | 5                  |
| 34 | Synthesis of high-performance Mo–La2O3 powder by hydrogen reduction of MoO2 originated from a self-reduction strategy. Materials Research Express, 2019, 6, 126586.                                     | 0.8               | 5                  |
| 35 | Construction of FeS <sub>2</sub> @MoS <sub>2</sub> heterostructures for enhanced hydrogen<br>evolution. Sustainable Energy and Fuels, 2022, 6, 2243-2248.                                               | 2.5               | 5                  |
| 36 | Effect of K:Ba ratio on energy storage properties of strontium barium potassium niobate-glass ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 19262-19269.                  | 1.1               | 4                  |

Dezhi Wang

| #  | ARTICLE                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dual-ion intercalated 1T/2H MoS2 with expanded interlayers as supercapacitor electrode materials.<br>Materials Research Express, 2019, 6, 085534.                                                                                                   | 0.8 | 4         |
| 38 | Mn, P Co doped Sharp-edged Mo2C Nanosheets Anchored on Porous Carbon for Efficient<br>Electrocatalytic Hydrogen Evolution. Sustainable Energy and Fuels, 0, , .                                                                                     | 2.5 | 4         |
| 39 | Microstructures and properties of 90W-4Ni-6Mn alloy prepared by vacuum sintering. Materials<br>Research Express, 2020, 7, 036522.                                                                                                                   | 0.8 | 3         |
| 40 | Mn boosted the electrocatalytic hydrogen evolution of N, P co-doped Mo <sub>2</sub> C <i>via</i> synergistically tuning the electronic structures. Sustainable Energy and Fuels, 2022, 6, 3363-3370.                                                | 2.5 | 3         |
| 41 | Combining Diffusion Bonding With Rolling to Manufacture CPC Composites With High Bond Strength<br>for Electronic Packaging Applications. IEEE Transactions on Components, Packaging and<br>Manufacturing Technology, 2014, 4, 4-7.                  | 1.4 | 2         |
| 42 | Preparation and Characterization of MoB Coating on Mo Substrate. Metals, 2018, 8, 93.                                                                                                                                                               | 1.0 | 2         |
| 43 | Boosted mechanical properties of sintered MoLa alloys with ultrafine-grains by the nanostructuring<br>of secondary phase. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2020, 798, 140270. | 2.6 | 2         |
| 44 | Property of TiO2-15MgAl2O4 Electrical-Heating Coating Prepared by Atmospheric Plasma Spraying and Hydrogen Heat Treatment. Coatings, 2020, 10, 177.                                                                                                 | 1.2 | 2         |
| 45 | Effect of Na Doping on the Photocatalytic Hydrogen Production of Ferroelectric<br>K <sub>1-x</sub> Na <sub><i>x</i></sub> NbO <sub>3</sub> Nanofibers. Journal of Physical Chemistry C,<br>2022, 126, 3957-3966.                                    | 1.5 | 2         |
| 46 | Relation between doping and texture and property of tantalum bar and wire. Journal Wuhan<br>University of Technology, Materials Science Edition, 2009, 24, 278-282.                                                                                 | 0.4 | 0         |
| 47 | Simple approach to induce solidâ€state oriented growth of MoO <sub>3</sub> microrods. Micro and Nano Letters, 2016, 11, 102-104.                                                                                                                    | 0.6 | 0         |
| 48 | Tungsten-decorated MoP nanobelts for boosted hydrogen production. Materials Research Express, 2020, 7, 015506.                                                                                                                                      | 0.8 | 0         |