
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8834169/publications.pdf Version: 2024-02-01

LILLA V RUSIK

#	Article	IF	CITATIONS
1	Hyperglycemia-Induced Reactive Oxygen Species Toxicity to Endothelial Cells Is Dependent on Paracrine Mediators. Diabetes, 2008, 57, 1952-1965.	0.6	284
2	Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. Journal of Lipid Research, 2006, 47, 2028-2041.	4.2	279
3	Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in <i>db/db</i> Mice. Diabetes, 2018, 67, 1867-1879.	0.6	243
4	Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. Journal of Lipid Research, 2005, 46, 706-715.	4.2	233
5	Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. Journal of Experimental Medicine, 2009, 206, 2897-2906.	8.5	219
6	Anti-inflammatory Effect of Docosahexaenoic Acid on Cytokine-Induced Adhesion Molecule Expression in Human Retinal Vascular Endothelial Cells. , 2005, 46, 4342.		149
7	Remodeling of Retinal Fatty Acids in an Animal Model of Diabetes. Diabetes, 2010, 59, 219-227.	0.6	112
8	Inhibition of Cytokine Signaling in Human Retinal Endothelial Cells through Modification of Caveolae/Lipid Rafts by Docosahexaenoic Acid. , 2007, 48, 18.		88
9	Plasma Exosomes Contribute to Microvascular Damage in Diabetic Retinopathy by Activating the Classical Complement Pathway. Diabetes, 2018, 67, 1639-1649.	0.6	85
10	The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models. Diabetes, 2011, 60, 2370-2378.	0.6	81
11	N-3 Polyunsaturated Fatty Acids Prevent Diabetic Retinopathy by Inhibition of Retinal Vascular Damage and Enhanced Endothelial Progenitor Cell Reparative Function. PLoS ONE, 2013, 8, e55177.	2.5	79
12	Insulin-Like Growth Factor Binding Protein-3 Mediates Vascular Repair by Enhancing Nitric Oxide Generation. Circulation Research, 2009, 105, 897-905.	4.5	77
13	A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. Journal of Lipid Research, 2014, 55, 1797-1809.	4.2	76
14	Novel mechanism for obesity-induced colon cancer progression. Carcinogenesis, 2009, 30, 690-697.	2.8	75
15	Dyslipidemia, but Not Hyperglycemia, Induces Inflammatory Adhesion Molecules in Human Retinal Vascular Endothelial Cells. , 2003, 44, 5016.		72
16	The role of dyslipidemia in diabetic retinopathy. Vision Research, 2017, 139, 228-236.	1.4	70
17	Dual Anti-Inflammatory and Anti-Angiogenic Action of miR-15a in Diabetic Retinopathy. EBioMedicine, 2016, 11, 138-150.	6.1	66
18	Differential Regulation of High Glucose–Induced Glyceraldehyde-3-Phosphate Dehydrogenase Nuclear Accumulation in Mul`ller Cells by IL-1β and IL-6. , 2009, 50, 1920.		65

#	Article	IF	CITATIONS
19	<i>Per2</i> Mutation Recapitulates the Vascular Phenotype of Diabetes in the Retina and Bone Marrow. Diabetes, 2013, 62, 273-282.	0.6	61
20	Regulation of Retinal Inflammation by Rhythmic Expression of MiR-146a in Diabetic Retina. , 2014, 55, 3986.		61
21	Inhibition of Cytokine Signaling in Human Retinal Endothelial Cells through Downregulation of Sphingomyelinases by Docosahexaenoic Acid. , 2010, 51, 3253.		59
22	Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. Journal of Lipid Research, 2018, 59, 1586-1596.	4.2	56
23	Carbon Monoxide and Nitric Oxide Mediate Cytoskeletal Reorganization in Microvascular Cells via Vasodilator-Stimulated Phosphoprotein Phosphorylation. Diabetes, 2008, 57, 2488-2494.	0.6	54
24	CNS Inflammation and Bone Marrow Neuropathy in Type 1 Diabetes. American Journal of Pathology, 2013, 183, 1608-1620.	3.8	53
25	Regulation of Hepatic GLUT8 Expression in Normal and Diabetic Models. Endocrinology, 2003, 144, 1703-1711.	2.8	51
26	Lipid metabolism dysregulation in diabetic retinopathy. Journal of Lipid Research, 2021, 62, 100017.	4.2	50
27	The Mechanism of Diabetic Retinopathy Pathogenesis Unifying Key Lipid Regulators, Sirtuin 1 and Liver X Receptor. EBioMedicine, 2017, 22, 181-190.	6.1	48
28	Global Analysis of Retina Lipids by Complementary Precursor Ion and Neutral Loss Mode Tandem Mass Spectrometry. Methods in Molecular Biology, 2009, 579, 33-70.	0.9	47
29	Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy. PLoS ONE, 2016, 11, e0146829.	2.5	46
30	Dicer Expression Exhibits a Tissue-Specific Diurnal Pattern That Is Lost during Aging and in Diabetes. PLoS ONE, 2013, 8, e80029.	2.5	42
31	ELOVL4-Mediated Production of Very Long-Chain Ceramides Stabilizes Tight Junctions and Prevents Diabetes-Induced Retinal Vascular Permeability. Diabetes, 2018, 67, 769-781.	0.6	41
32	Fasting and fasting-mimicking treatment activate SIRT1/LXRα and alleviate diabetes-induced systemic and microvascular dysfunction. Diabetologia, 2021, 64, 1674-1689.	6.3	41
33	Role of Acid Sphingomyelinase in Shifting the Balance Between Proinflammatory and Reparative Bone Marrow Cells in Diabetic Retinopathy. Stem Cells, 2016, 34, 972-983.	3.2	39
34	Effect of Reduced Retinal VLC-PUFA on Rod and Cone Photoreceptors. , 2014, 55, 3150.		38
35	Changes in the Daily Rhythm of Lipid Metabolism in the Diabetic Retina. PLoS ONE, 2014, 9, e95028.	2.5	38
36	Retinal Vascular Abnormalities and Microglia Activation in Mice with Deficiency in Cytochrome P450 46A1–Mediated Cholesterol Removal. American Journal of Pathology, 2019, 189, 405-425.	3.8	36

#	Article	IF	CITATIONS
37	Examining the role of lipid mediators in diabetic retinopathy. Clinical Lipidology, 2012, 7, 661-675.	0.4	35
38	Are Diabetic Neuropathy, Retinopathy and Nephropathy Caused by Hyperglycemic Exclusion of Dehydroascorbate Uptake by Glucose Transporters?. Journal of Theoretical Biology, 2002, 216, 345-359.	1.7	34
39	Conditional Deletion of Bmal1 Accentuates Microvascular and Macrovascular Injury. American Journal of Pathology, 2017, 187, 1426-1435.	3.8	34
40	Models of retinal diseases and their applicability in drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 359-377.	5.0	33
41	Diurnal Rhythmicity of Autophagy Is Impaired in the Diabetic Retina. Cells, 2020, 9, 905.	4.1	33
42	Archived Unfrozen Neonatal Blood Spots Are Amenable to Quantitative Gene Expression Analysis. Neonatology, 2009, 95, 210-216.	2.0	30
43	Glucose-induced activation of glucose uptake in cells from the inner and outer blood-retinal barrier. Investigative Ophthalmology and Visual Science, 2002, 43, 2356-63.	3.3	28
44	Complementary precursor ion and neutral loss scan mode tandem mass spectrometry for the analysis of glycerophosphatidylethanolamine lipids from whole rat retina. Analytical and Bioanalytical Chemistry, 2009, 394, 267-275.	3.7	26
45	Glucose transporters control gene expression of aldose reductase, PKCα, and GLUT1 in mesangial cells in vitro. American Journal of Physiology - Renal Physiology, 1999, 277, F97-F104.	2.7	25
46	Non-mammalian fat-1 gene prevents neoplasia when introduced to a mouse hepatocarcinogenesis model. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 1133-1144.	2.4	25
47	Free Insulin-like Growth Factor Binding Protein-3 (IGFBP-3) Reduces Retinal Vascular Permeability in Association with a Reduction of Acid Sphingomyelinase (ASMase). , 2011, 52, 8278.		23
48	Glucose-specific regulation of aldose reductase in capan-1 human pancreatic duct cells In vitro Journal of Clinical Investigation, 1997, 100, 1685-1692.	8.2	23
49	Gene expression in archived newborn blood spots distinguishes infants who will later develop cerebral palsy from matched controls. Pediatric Research, 2013, 73, 450-456.	2.3	22
50	Increase in acid sphingomyelinase level in human retinal endothelial cells and CD34+ circulating angiogenic cells isolated from diabetic individuals is associated with dysfunctional retinal vasculature and vascular repair process in diabetes. Journal of Clinical Lipidology, 2017, 11, 694-703.	1.5	22
51	Hematopoietic stem/progenitor involvement in retinal microvascular repair during diabetes: Implications for bone marrow rejuvenation. Vision Research, 2017, 139, 211-220.	1.4	21
52	Extracellular Vesicle-Induced Classical Complement Activation Leads to Retinal Endothelial Cell Damage via MAC Deposition. International Journal of Molecular Sciences, 2020, 21, 1693.	4.1	18
53	Tumor Necrosis Factor Alpha (TNF-α) Disrupts Kir4.1 Channel Expression Resulting in Müller Cell Dysfunction in the Retina. , 2017, 58, 2473.		16
54	Lipids, hyperreflective crystalline deposits and diabetic retinopathy: potential systemic and retinal-specific effect of lipid-lowering therapies. Diabetologia, 2022, 65, 587-603.	6.3	15

#	Article	IF	CITATIONS
55	Mitochondrial Ceramide Effects on the Retinal Pigment Epithelium in Diabetes. International Journal of Molecular Sciences, 2020, 21, 3830.	4.1	14
56	Selective LXR agonist DMHCA corrects retinal and bone marrow dysfunction in type 2 diabetes. JCI Insight, 2020, 5, .	5.0	14
57	Ataxia Telangiectasia Mutated Dysregulation Results in Diabetic Retinopathy. Stem Cells, 2016, 34, 405-417.	3.2	12
58	Analysis of Retina and Erythrocyte Glycerophospholipid Alterations in a Rat Model of Type 1 Diabetes. Journal of the Association for Laboratory Automation, 2009, 14, 383-399.	2.8	11
59	Enteral Arg-Gln Dipeptide Administration Increases Retinal Docosahexaenoic Acid and Neuroprotectin D1 in a Murine Model of Retinopathy of Prematurity. , 2018, 59, 858.		11
60	Inhibition by a receptor-mediated Ca2+ entry blocker, SK & F 96365, of Ca2+ and secretory responses in rat pancreatic acini. European Journal of Pharmacology, 1993, 247, 273-281.	2.6	10
61	Interplay between Endothelial Cell Cytoskeletal Rigidity and Plasma Membrane Fluidity. Biophysical Journal, 2017, 112, 831-833.	0.5	9
62	Micro-respirometry of whole cells and isolated mitochondria. RSC Advances, 2019, 9, 33257-33267.	3.6	9
63	Come to the Light Side : In Vivo Monitoring of Pseudomonas aeruginosa Biofilm Infections in Chronic Wounds in a Diabetic Hairless Murine Model. Journal of Visualized Experiments, 2017, , .	0.3	8
64	Exocytosis in the Dissociated Pancreatic Acinar Cells of the Guinea Pig Directly Visualized by VEC-DIC Microscopy. Biochemical and Biophysical Research Communications, 2000, 277, 134-137.	2.1	6
65	Evaluation of Sex-Specific Gene Expression in Archived Dried Blood Spots (DBS). International Journal of Molecular Sciences, 2012, 13, 9599-9608.	4.1	6
66	Effect of storage time on gene expression data acquired from unfrozen archived newborn blood spots. Molecular Genetics and Metabolism, 2016, 119, 207-213.	1.1	5
67	Competitive inhibition by procaine of carbacholâ€induced stimulusâ€secretion coupling in rat pancreatic acini. British Journal of Pharmacology, 1993, 110, 603-608.	5.4	3
68	Wnting Out Ocular Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1046-1047.	2.4	3
69	Impact of Bone Marrow Neuropathy on the Outcome of Autologous Stem Cell Transplantation (ASCT) for Lymphoma. Biology of Blood and Marrow Transplantation, 2013, 19, S191-S192.	2.0	Ο
70	Aldose Reductase Meets Histone Acetylation: A New Role for an Old Player. Diabetes, 2014, 63, 402-404.	0.6	0
71	Fingolimod Expands Human Umbilical Cord Blood Cells (UCB) in Vitro and Improves Engraftment Rate of Human UCB in Sublethally Irradiated NOD SCID Gamma (NSG) Mice. Blood, 2014, 124, 2413-2413.	1.4	0
72	47-OR: Regulation of SIRT1 as a Target of Prevention of Diabetic Retinopathy in db/db Mice. Diabetes, 2019. 68.	0.6	0

#	Article	IF	CITATIONS
73	583-P: Increase in Mitochondrial Ceramide Contributes to Diabetes-Induced Retinal Endothelial Cell Damage. Diabetes, 2019, 68, 583-P.	0.6	ο
74	333-OR: DMHCA Reduces the Development of Diabetic Retinopathy (DR) in db/db Mice by Lowering Cholesterol Levels and Altering the Transcriptomic Profile of Hematopoietic Stem Cells. Diabetes, 2020, 69, 333-OR.	0.6	0