
Zhao Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8833903/publications.pdf Version: 2024-02-01

ΖΗΛΟ ΟΙΛΝ

#	Article	IF	CITATIONS
1	Voltage-Modulated Structure Stress for Enhanced Electrochemcial Performances: The Case of μ-Sn in Sodium-Ion Batteries. Nano Letters, 2021, 21, 3588-3595.	9.1	38
2	Bifunctional Catalytic Activity Guided by Rich Crystal Defects in Ti ₃ C ₂ MXene Quantum Dot Clusters for Li–O ₂ Batteries. Advanced Energy Materials, 2021, 11, 2003069.	19.5	52
3	Nitrogen-Containing Gas Sensing Properties of 2-D Ti2N and Its Derivative Nanosheets: Electronic Structures Insight. Nanomaterials, 2021, 11, 2459.	4.1	5
4	Eu ²⁺ ions as an antioxidant additive for Sn-based perovskite light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 12079-12085.	5.5	18
5	Reduced bandgap and enhanced <i>p</i> -type electrical conduction in Ag-alloyed Cu2O thin films. Journal of Applied Physics, 2020, 128, .	2.5	3
6	Controllable Phosphorylation Strategy for Free-Standing Phosphorus/Nitrogen Cofunctionalized Porous Carbon Monoliths as High-Performance Potassium Ion Battery Anodes. ACS Nano, 2020, 14, 14057-14069.	14.6	67
7	Poisonous Vapor Adsorption on Pure and Modified Aluminum Nitride Nanosheet for Environmental Safety: A DFT Exploration. Sustainability, 2020, 12, 10097.	3.2	3
8	First-principles calculations into LiAl(NH2)4 and its derivative hydrides for potential sodium storage. Results in Physics, 2020, 19, 103408.	4.1	2
9	First-Principles Exploration of Hazardous Gas Molecule Adsorption on Pure and Modified Al60N60 Nanoclusters. Nanomaterials, 2020, 10, 2156.	4.1	2
10	Defective and doped aluminum nitride monolayers for NO adsorption: Physical insight. Chemical Physics Letters, 2020, 753, 137592.	2.6	11
11	Cobalt(II) Tetraaminophthalocyanineâ€modified Multiwall Carbon Nanotubes as an Efficient Sulfur Redox Catalyst for Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 3034-3044.	6.8	27
12	Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nature Communications, 2020, 11, 1576.	12.8	237
13	Sodium Carboxymethyl Cellulose as an Effective Modifier for Boosting the Electrochemical Performance of Commercial TiO 2. Energy Technology, 2020, 8, 1901253.	3.8	1
14	Molecular-level heterostructures assembled from layered black phosphorene and Ti3C2 MXene as superior anodes for high-performance sodium ion batteries. Nano Energy, 2019, 65, 104037.	16.0	143
15	Ab Initio Screening of Doped Mg(AlH4)2 Systems for Conversion-Type Lithium Storage. Materials, 2019, 12, 2599.	2.9	5
16	Theoretical prediction of a novel aluminum nitride nanostructure: Atomistic exposure. Ceramics International, 2019, 45, 23690-23693.	4.8	3
17	Structural Evolution of AlN Nanoclusters and the Elemental Chemisorption Characteristics: Atomistic Insight. Nanomaterials, 2019, 9, 1420.	4.1	4
18	Atomistic Modeling of Various Doped Mg2NiH4 as Conversion Electrode Materials for Lithium Storage. Crystals, 2019, 9, 254.	2.2	5

Zhao Qian

#	Article	IF	CITATIONS
19	Effective enhancement in rate capability and cyclability of Li4Ti5O12 enabled by coating lithium magnesium silicate. Electrochimica Acta, 2019, 295, 891-899.	5.2	25
20	The in-situ synthesis and strengthening mechanism of the multi-scale SiC particles in Al-Si-C alloys. Journal of Alloys and Compounds, 2018, 750, 935-944.	5.5	22
21	First-principles investigation of CO adsorption on pristine, C-doped and N-vacancy defected hexagonal AlN nanosheets. Applied Surface Science, 2018, 439, 196-201.	6.1	47
22	Co@C/CoOx coupled with N-doped layer-structured carbons for excellent CO2 capture and oxygen reduction reaction. Carbon, 2018, 133, 306-315.	10.3	34
23	Exploring pristine and Li-doped Mg2NiH4 compounds with potential lithium-storage properties: Ab initio insight. Journal of Alloys and Compounds, 2018, 746, 140-146.	5.5	8
24	The grain refinement performance of B-doped TiC on Zr-containing Al alloys. Journal of Alloys and Compounds, 2018, 731, 774-783.	5.5	22
25	Bread-making synthesis of hierarchically Co@C nanoarchitecture in heteroatom doped porous carbons for oxidative degradation of emerging contaminants. Applied Catalysis B: Environmental, 2018, 225, 76-83.	20.2	194
26	Effect of defects on adsorption characteristics of AlN monolayer towards SO2 and NO2: Ab initio exposure. Applied Surface Science, 2018, 462, 615-622.	6.1	42
27	Morphological transformation mechanism of eutectic Si phases in Al–Si alloys by nano-AlNp. Journal of Alloys and Compounds, 2018, 765, 113-120.	5.5	22
28	Ab initio insight into graphene nanofibers to destabilize hydrazine borane for hydrogen release. Chemical Physics Letters, 2017, 669, 110-114.	2.6	3
29	Revisiting Mg–Mg2Ni System from Electronic Perspective. Metals, 2017, 7, 489.	2.3	5
30	Unveiling the Semicoherent Interface with Definite Orientation Relationships between Reinforcements and Matrix in Novel Al ₃ BC/Al Composites. ACS Applied Materials & Interfaces, 2016, 8, 28194-28201.	8.0	53
31	Influences of Fe, Si and homogenization on electrical conductivity and mechanical properties of dilute Al–Mg–Si alloy. Journal of Alloys and Compounds, 2016, 666, 50-57.	5.5	51
32	Identification of novel dual-scale Al3BC particles in Al based composites. Materials and Design, 2016, 93, 283-290.	7.0	42
33	Generation and evolution of nanoscale AlP and Al13Fe4 particles in Al–Fe–P system. Journal of Alloys and Compounds, 2015, 622, 662-668.	5.5	10
34	The synergistic effect of Al–B–C master alloy to improve conductivity and strength of 1070 alloy. Journal of Alloys and Compounds, 2015, 639, 478-482.	5.5	19
35	Optimizing microstructures of dilute Al–Fe–Si alloys designed with enhanced electrical conductivity and tensile strength. Journal of Alloys and Compounds, 2015, 650, 768-776.	5.5	44
36	Screening study of light-metal and transition-metal-doped NiTiH hydrides as Li-ion battery anode materials. Solid State Ionics, 2014, 258, 88-91.	2.7	9

ZHAO QIAN

#	Article	IF	CITATIONS
37	Energetic and structural analysis of N2H4BH3 inorganic solid and its modified material for hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 6718-6725.	7.1	7
38	Metal-decorated graphene oxide for ammonia adsorption. Europhysics Letters, 2013, 103, 28007.	2.0	17
39	Lithium storage in amorphous TiNi hydride: Electrode for rechargeable lithium-ion batteries. Materials Chemistry and Physics, 2013, 141, 348-354.	4.0	15
40	Pure and Li-doped NiTiH: Potential anode materials for Li-ion rechargeable batteries. Applied Physics Letters, 2013, 103, 033902.	3.3	11
41	C ₆₀ -mediated hydrogen desorption in Li–N–H systems. Nanotechnology, 2012, 23, 485406.	2.6	5
42	Oxygen- and nitrogen-chemisorbed carbon nanostructures for Z-scheme photocatalysis applications. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	8
43	Excellent Catalytic Effects of Graphene Nanofibers on Hydrogen Release of Sodium alanate. Journal of Physical Chemistry C, 2012, 116, 10861-10866.	3.1	33
44	Effect of co-addition of RE, Fe and Mn on the microstructure and performance of A390 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 527, 146-149.	5.6	27
45	Effects of trace Mn addition on the elevated temperature tensile strength and microstructure of a low-iron Al–Si piston allov. Materials Letters, 2008, 62, 2146-2149.	2.6	81