
Matthias Labrenz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8833771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME Journal, 2011, 5, 1571-1579.	9.8	2,219
2	Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?. Analytical and Bioanalytical Chemistry, 2016, 408, 8377-8391.	3.7	611
3	Environmental Factors Support the Formation of Specific Bacterial Assemblages on Microplastics. Frontiers in Microbiology, 2017, 8, 2709.	3.5	349
4	Marine microplastic-associated biofilms – a review. Environmental Chemistry, 2015, 12, 551.	1.5	346
5	Marine Microbial Assemblages on Microplastics: Diversity, Adaptation, and Role in Degradation. Annual Review of Marine Science, 2020, 12, 209-232.	11.6	264
6	Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300Âcmâ^'1 for FTIR transmission measurements. Analytical and Bioanalytical Chemistry, 2015, 407, 6791-6801.	3.7	215
7	Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 137-147.	1.7	194
8	Microplastics alter composition of fungal communities in aquatic ecosystems. Environmental Microbiology, 2017, 19, 4447-4459.	3.8	182
9	Cultivation and functional characterization of 79 planctomycetes uncovers their unique biology. Nature Microbiology, 2020, 5, 126-140.	13.3	164
10	Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 506-510.	7.1	138
11	<i>Epsilonproteobacteria</i> Represent the Major Portion of Chemoautotrophic Bacteria in Sulfidic Waters of Pelagic Redoxclines of the Baltic and Black Seas. Applied and Environmental Microbiology, 2008, 74, 7546-7551.	3.1	131
12	Spatial Environmental Heterogeneity Determines Young Biofilm Assemblages on Microplastics in Baltic Sea Mesocosms. Frontiers in Microbiology, 2019, 10, 1665.	3.5	112
13	Relevance of a crenarchaeotal subcluster related to <i>Candidatus</i> Nitrosopumilus maritimus to ammonia oxidation in the suboxic zone of the central Baltic Sea. ISME Journal, 2010, 4, 1496-1508.	9.8	110
14	The Eukaryotic Life on Microplastics in Brackish Ecosystems. Frontiers in Microbiology, 2019, 10, 538.	3.5	109
15	¹³ Câ€isotope analyses reveal that chemolithoautotrophic <i>Gamma</i> ― and <i>Epsilonproteobacteria</i> feed a microbial food web in a pelagic redoxcline of the central Baltic Sea. Environmental Microbiology, 2009, 11, 326-337.	3.8	98
16	Identification of a Thiomicrospira denitrificans -Like Epsilonproteobacterium as a Catalyst for Autotrophic Denitrification in the Central Baltic Sea. Applied and Environmental Microbiology, 2006, 72, 1364-1372.	3.1	91
17	Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic redoxcline, and an emended description of the genus Sulfurimonas. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 4141-4148.	1.7	88
18	Measuring unbiased metatranscriptomics in suboxic waters of the central Baltic Sea using a new <i>in situ</i> fixation system. ISME Journal, 2012, 6, 461-470.	9.8	80

MATTHIAS LABRENZ

#	Article	IF	CITATIONS
19	SUP05 Dominates the Gammaproteobacterial Sulfur Oxidizer Assemblages in Pelagic Redoxclines of the Central Baltic and Black Seas. Applied and Environmental Microbiology, 2013, 79, 2767-2776.	3.1	78
20	Impact of Different In Vitro Electron Donor/Acceptor Conditions on Potential Chemolithoautotrophic Communities from Marine Pelagic Redoxclines. Applied and Environmental Microbiology, 2005, 71, 6664-6672.	3.1	73
21	Tracing microplastics in aquatic environments based on sediment analogies. Scientific Reports, 2019, 9, 15207.	3.3	68
22	Traditional cattle manure application determines abundance, diversity and activity of methanogenic Archaea in arable European soil. Environmental Microbiology, 2007, 9, 612-624.	3.8	66
23	High abundance and dark CO ₂ fixation of chemolithoautotrophic prokaryotes in anoxic waters of the Baltic Sea. Limnology and Oceanography, 2008, 53, 14-22.	3.1	65
24	When every particle matters: A QuEChERS approach to extract microplastics from environmental samples. MethodsX, 2020, 7, 100784.	1.6	61
25	Bacterioneuston Community Structure in the Southern Baltic Sea and Its Dependence on Meteorological Conditions. Applied and Environmental Microbiology, 2011, 77, 3726-3733.	3.1	59
26	Quantitative Distributions of <i>Epsilonproteobacteria</i> and a <i>Sulfurimonas</i> Subgroup in Pelagic Redoxclines of the Central Baltic Sea. Applied and Environmental Microbiology, 2007, 73, 7155-7161.	3.1	58
27	N and O Isotope Fractionation in Nitrate during Chemolithoautotrophic Denitrification by <i>Sulfurimonas gotlandica</i> . Environmental Science & Technology, 2014, 48, 13229-13237.	10.0	58
28	Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing α-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 41-47.	1.7	56
29	Diversity of active chemolithoautotrophic prokaryotes in the sulfidic zone of a Black Sea pelagic redoxcline as determined by rRNA-based stable isotope probing. FEMS Microbiology Ecology, 2010, 74, 32-41.	2.7	54
30	Development and Application of a Real-Time PCR Approach for Quantification of Uncultured Bacteria in the Central Baltic Sea. Applied and Environmental Microbiology, 2004, 70, 4971-4979.	3.1	52
31	Roseibaca ekhonensis gen. nov., sp. nov., an alkalitolerant and aerobic bacteriochlorophyll a-producing alphaproteobacterium from hypersaline Ekho Lake. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1935-1940.	1.7	49
32	Hypoxia and nitrogen processing in the Baltic Sea water column. Limnology and Oceanography, 2012, 57, 325-337.	3.1	48
33	Vibrio Colonization Is Highly Dynamic in Early Microplastic-Associated Biofilms as Well as on Field-Collected Microplastics. Microorganisms, 2021, 9, 76.	3.6	48
34	Small Microplastic Sampling in Water: Development of an Encapsulated Filtration Device. Water (Switzerland), 2018, 10, 1055.	2.7	46
35	Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the eastern Gotland Basin, Baltic Sea. FEMS Microbiology Ecology, 2010, 71, 226-236.	2.7	45
36	Polystyrene influences bacterial assemblages in Arenicola marina-populated aquatic environments inÂvitro. Environmental Pollution, 2016, 219, 219-227.	7.5	44

MATTHIAS LABRENZ

#	Article	IF	CITATIONS
37	Genomic and proteomic profiles of biofilms on microplastics are decoupled from artificial surface properties. Environmental Microbiology, 2021, 23, 3099-3115.	3.8	43
38	High-Throughput Analyses of Microplastic Samples Using Fourier Transform Infrared and Raman Spectrometry. Applied Spectroscopy, 2020, 74, 1185-1197.	2.2	39
39	Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradients. Environmental Microbiology, 2013, 15, 1505-1513.	3.8	38
40	Impact of protist grazing on a key bacterial group for biogeochemical cycling in <scp>B</scp> altic <scp>S</scp> ea pelagic oxic/anoxic interfaces. Environmental Microbiology, 2013, 15, 1580-1594.	3.8	33
41	Agricultural application of microplastic-rich sewage sludge leads to further uncontrolled contamination. Science of the Total Environment, 2022, 806, 150611.	8.0	30
42	Residual Monomer Content Affects the Interpretation of Plastic Degradation. Scientific Reports, 2019, 9, 2120.	3.3	28
43	Success of chemolithoautotrophic SUP05 and <i>Sulfurimonas</i> GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as <i>Kâ€</i> and <i>r</i> â€strategists. Environmental Microbiology, 2017, 19, 2495-2506.	3.8	26
44	Evaluation of Electrostatic Separation of Microplastics From Mineral-Rich Environmental Samples. Frontiers in Environmental Science, 2020, 8, .	3.3	26
45	Assessment of Subsampling Strategies in Microspectroscopy of Environmental Microplastic Samples. Frontiers in Environmental Science, 2021, 8, .	3.3	26
46	Combined Approaches to Predict Microplastic Emissions Within an Urbanized Estuary (Warnow,) Tj ETQq0 0 0	rgBT_/Over	lock 10 Tf 50 25
47	Fate and stability of polyamide-associated bacterial assemblages after their passage through the digestive tract of the blue mussel Mytilus edulis. Marine Pollution Bulletin, 2017, 125, 132-138.	5.0	24
48	Paint particles are a distinct and variable substrate for marine bacteria. Marine Pollution Bulletin, 2019, 146, 117-124.	5.0	24
49	Acetate-utilizing bacteria at an oxic-anoxic interface in the Baltic Sea. FEMS Microbiology Ecology, 2013, 85, 251-261.	2.7	22
50	An artificial neural network and Random Forest identify glyphosate-impacted brackish communities based on 16S rRNA amplicon MiSeq read counts. Marine Pollution Bulletin, 2019, 149, 110530.	5.0	22
51	Exploring the common denominator between microplastics and microbiology: a scientometric approach. Scientometrics, 2018, 117, 2145-2157.	3.0	20
52	Cross-Hemisphere Study Reveals Geographically Ubiquitous, Plastic-Specific Bacteria Emerging from the Rare and Unexplored Biosphere. MSphere, 2021, 6, e0085120.	2.9	20
53	Retrieval of nearly complete 16S rRNA gene sequences from environmental DNA following 16S rRNA-based community fingerprinting. Environmental Microbiology, 2005, 7, 670-675.	3.8	19
54	Closing Microplastic Pathways Before They Open: A Model Approach. Environmental Science & Technology, 2018, 52, 3340-3341.	10.0	17

MATTHIAS LABRENZ

#	Article	IF	CITATIONS
55	Identification and quantification of microplastic particles in drinking water treatment sludge as an integrative approach to determine microplastic abundance in a freshwater river. Environmental Pollution, 2021, 286, 117524.	7.5	12
56	The pelagic food web. , 2017, , 281-332.		10
57	Pyruvate utilization by a chemolithoautotrophic epsilonproteobacterial key player of pelagic Baltic Sea redoxclines. FEMS Microbiology Ecology, 2014, 87, 770-779.	2.7	9
58	Measuring impacts of microplastic treatments via image recognition on immobilised particles below 100 l¼m. Microplastics and Nanoplastics, 2021, 1, .	8.8	9
59	A Glyphosate Pulse to Brackish Long-Term Microcosms Has a Greater Impact on the Microbial Diversity and Abundance of Planktonic Than of Biofilm Assemblages. Frontiers in Marine Science, 2019, 6, .	2.5	8
60	<i>Sulfurimonas</i> subgroup GD17 cells accumulate polyphosphate under fluctuating redox conditions in the Baltic Sea: possible implications for their ecology. ISME Journal, 2019, 13, 482-493.	9.8	8
61	Machine Learning Predicts the Presence of 2,4,6-Trinitrotoluene in Sediments of a Baltic Sea Munitions Dumpsite Using Microbial Community Compositions. Frontiers in Microbiology, 2021, 12, 626048.	3.5	6
62	Uneven host cell growth causes lysogenic virus induction in the Baltic Sea. PLoS ONE, 2019, 14, e0220716.	2.5	4
63	AFISsys - An autonomous instrument for the preservation of brackish water samples for microbial metatranscriptome analysis. Water Research, 2019, 149, 351-361.	11.3	4
64	Microplastics into the Anthropocene. , 2020, , 1-16.		4
65	A Bioreactor Approach to Investigate the Linkage between Methane Oxidation and Nitrate/Nitrite Reduction in the Pelagic Oxic-Anoxic Transition Zone of the Central Baltic Sea. Frontiers in Marine Science, 2016, 3, .	2.5	3
66	Biological indicators. , 2017, , 513-526.		2
67	Microplastics into the Anthropocene. , 2022, , 1363-1378.		0